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Abstract

The outcomes of counts commonly occur in the area of disease mapping for mortality rates or disease rates.
A Poisson distribution is usually assumed as a model of disease rates in conjunction with a gamma prior. The
small area typically refers to a small geographical area or demographic group for which very little information is
available from the sample surveys. Under this situation the model-based estimation is very popular, in which the
auxiliary variables from various administrative sources are used. The empirical Bayes estimator under Poisson-
gamma model has been considered with its accuracy measures. An accuracy measure using a bootstrap samples
adjust the underestimation incurred by the posterior variance as an estimator of true mean squared error. We
explain the suggested method through a practical dataset of hitters in baseball games. We also perform a Monte
Carlo study to compare the accuracy measures of mean squared error.

Keywords: Disease rate, Poisson-gamma model, inverse dispersion parameter, negative bino-
mial, empirical Bayes, small area estimation, mean squared error, bootstrap sample.

1. Introduction

A study on mortality or disease rates to display the geographical variability of disease is very popular
in epidemiological research. The outcomes of counts commonly occur in the area of disease mapping
for mortality rates or disease rates. The small area typically refers to a small geographical area or
demographic group for which very little information is available from sample surveys.

Model based estimation under small samples has received a considerable importance in recent
years. Small area(or domain) generally refers to a subgroup of a population from which samples are
drawn. The usual direct estimators for a small area are based on data from only the sample units in
the area and are likely to yield unacceptably large standard errors due to small sizes. This makes it
necessary to borrow strength from related areas to find more accurate estimates for a given area. For
example, the synthetic estimator formally described by Gonzalez (1973) is traditionally used for small
area estimation because of its simplicity and applicability to general sampling designs with increased
accuracy in estimation. We may refer to Ghosh and Rao (1994) for general discussions about small
area estimation.

In this paper we focus our attention to the empirical Bayes(EB) method to model count data. Efron
and Morris (1975) were the first to apply EB method based on the idea of pooling information across
areas to reduce the total mean squared error(MSE). A Poisson distribution is usually assumed to model
disease rates in conjunction with gamma prior. Clayton and Kaldor (1987) proposed EB estimation
procedures using a Poisson likelihood and gamma prior framework in testing for geographical excess
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risk. Similar work on disease rates has been done by many researchers such as Tsutakawa et al. (1985)
and Marshall (1991). Although EB estimators are widely used in various settings, limited research has
been done regarding the accuracy measures of the EB estimator. A naive EB approach measures its
uncertainty by the estimated posterior variance. As discussed by Ghosh and Rao (1994) this measure
can lead to severe underestimation of the true posterior variance under a prior distribution of related
parameters. As remedies to this problem there has been significant research such as the jackknife
method by Jiang et al. (2002), and also the Taylor expansion of MSE by Lahiri and Maiti (2002). We
may refer to Rao (2003) for the general discussion on the small area estimation.

We suggest an alternative method using bootstrap samples to adjust the underestimation incurred
by the posterior variance. Other bootstrapping techniques have been proposed by Laird and Louis
(1987), Butar and Lahiri (2003) under different settings to account for the estimation of integrated
Bayes risk.

2. Poisson-Gamma Model for Counts Data

We consider a population which are partitioned into N areas indexed by i,i = 1,2, ..., N. We assume
that the outcomes of our interest denote the number of events such as diseases recorded over a period
of years or smaller subregions. Let n; be the period (or number) of these years or subregions, which
is the so called person-years in terms of disease mapping. In the literature of disease mapping the
disease counts are modeled as Poisson variates with mean rate 6;. If we let y; be the cumulated counts
over n; units, then y; follows a Poisson distribution with mean n;6;. In a Bayesian framework the mean
rate 6; itself is assumed to have a certain distribution. If we assume a gamma prior which is conjugate
of Poisson distribution, this kind of framework is usually called a Poisson-gamma model. We simply
denote the Poisson distribution with mean n,;6; by y;|6; ~ Poi(n;8;).
A Poisson-gamma model can be formulated as

0; = wiyi, (2.1)

where the error term y; follows a gamma distribution with shape parameter ¢ and scale 1/¢ and y; is
the mean of 6; which can be explained in terms of auxiliary variables. We note that the y; has mean
1 and variance 1/¢. The parameter ¢ is sometimes called an inverse dispersion parameter. Jeong and
Yang (2009) discussed the problem of low means affecting the estimation of ¢ when sample sizes are
small.

Let xy, ..., x, be the auxiliary variables(covariates), and we assume that the mean y; is explained
by a linear predictor

nB;x) =Po+Bi1xi+ - +PBpxp, (2.2)
where B8 = (B8o,B1,...,8p) and x = (x1,X2,...,x,)". Without loss of generality we assume the log
link relationship given by

log(u;) = Bo + Brxi1 + -+ + BpXip. (2.3)

The joint density of y; and 6; is written as

—nib; (37.0.)Vi 0‘_75_1 _9/.(*%) ¢
SO, 0) L (¢)

W T@) \m
~ nifi (¢/Hl)¢ 6y;+¢*1676i(’“+‘%),

_ L O 2.4
yi'l'(#) @4



Accuracy Measures of Empirical Bayes Estimator for Mean Rates 847

where I'(-) is the Euler gamma function defined by I'(@) = fooo 1*~'e7'dt. By integrating out the joint
density of (2.4) with respect to 6; we obtain the marginal density of y;. We remark that the joint
density f(y;,8;) and f(y;) depend on ¢, y; and hence on B8 but we omit their dependence to simplify
the notation. In a routine way we find the marginal of y; by integrating out with respect to 6;

F(yi+¢)( ¢ )“’( nifl )y’
yill(®) \njpi+¢) \npi +¢)

The marginal density in (2.5) denotes a negative binomial distribution. It is an easy task to find the
conditional density of 6; given y; having the form

fOo) = (2.5)

F@1y) e 0717 E) (2.6)

The conditional density of (2.6) denotes the gamma distribution with shape y; + ¢ and scale {n; +
(¢/u;)}~". The posterior mean and variance are respectively given by

E0;|yi, x;) = #;(/ﬁﬂ) 2.7
and
Var(@; [y) = — 22 28)

{ni + (@/udy*

In a Bayesian approach we take the posterior mean of (2.7) as an estimator of 6; when the parameters
are assumed to be known.

3. Empirical Bayes Estimator
3.1. Estimation of parameters

To estimate the unknown parameters we discuss the maximum likelihood(ML) method applied to the
marginal density of y; in (2.5) using the Newton-Raphson algorithm. The marginal log-likelihood
function of y = (y1, ..., yn)" denoted by I(¢,8|y) can be rewritten as

l(¢,ﬁ|y)ocZN:{log(M)+¢log( 9 )+yilog(%)}. 3.1
p L'(¢) nili + ¢ nili + ¢
We note that the first term on the right side of (3.1) can be simplified by using the relation
Foi+ ) X h
log(T(l))) = ; {log(l + a) + log(¢)} . (3.2)

If we apply the Newton-Raphson algorithm based on the gradient elements of log-likelihood function
the ML estimates of ¢ and 8 can be obtained in an iterative way. The subroutine function such as
NLPTR in SAS can be implemented by PROC IML.

By substituting the estimates of parameters into (2.7) we propose an EB estimator of 6; given by

QEB — Yi'"é3

— s 3.3)
n; + (¢/ﬁi)
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where [1; = exp(ﬁo + [ﬁx,»l +-- ﬁpx,-p) from the relationship in (2.3). On the other hand, the naive
direct ML estimator of 6, based only on y;, is given by 8L = y;/n;. The EB estimator #%% in (3.3)
can be written in terms of both the mean {2; = n(B; x;) and the ML estimator §¥ as

o7 = (e
nifl; + ¢ nifl; + ¢

=8 + (1 - 6)8ME, (3.4)

where 6; = ¢/(n;f1; + ¢) with 0 < §; < 1. As we see in (3.4) when @ is relatively small compared to »;
or f1; the 8% is more shrunken to ML

3.2. Accuracy measures

Steffey and Kass (1991) conjectured that the MSE of EB estimator is approximately equal to the
posterior variance. By substituting the unknown parameters ¢ and g into (2.8) we find the estimated
posterior variance, hereafter denoted by Vl.EB , is of the form
niéML + b
L (35)
(ni +9¢/ ﬁi)

As discussed by Ghosh and Rao (1994) this posterior variance fails to take account of the uncertainty
about the parameters 8 and ¢ in which the form of their prior distribution is not specified in the EB
approach unlike in the HB approach. We note that

Var(6;|y) = Eg¢[Var(6; | yi.B, $)] + Varg 4y [E(O; | yi , B, )], (3.6)

where Eg 4 and Varg 4 respectively denote the expectation and variance with respect to the posterior
distribution of 8 and ¢ given the datay. The accuracy measure ViEB in (3.5) is a good approximation
only to the first term of the right side of (3.6), but the second variance term is ignored in the naive EB
approach.

We suggest an alternative accuracy measure of §7% by the bootstrap method. Let (x*®,y*®) be
the b bootstrap sample generated by the following parametric procedure. Based on the given dataset
(x,y) the bootstrapped outcome variate y:.“(b) is generated from a Poisson distribution having mean
n;6F8 and the covariate x*® is taken to equal the given x. Based on this bootstrap sample we find
the ™ EB estimator, denoted by 95“53 , having the same form as (3.3), where b = 1,2,...,B and B
denote the number of bootstrap replications. Define the average of bootstrap estimators over all B
replications as

VEE

Bi(-) = 1 Z oEE, (3.7)

b=1

We propose a bootstrap based accuracy measure of EB estimator by the relationship

B
yBoot = ZVar (6:15;7) + 12 (608 — 9() (3.8)
b=1

The second term on the right side of (3.8) has been added to adjust the underestimation by the posterior
variance of (3.5) as an accuracy measure. The bootstrap estimator is promising even if further studies
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Table 1: Data of hitters against pitcher Mike Mussina

Estimators Accuracy Measures

Hitter At-bats Hits T 7EB B VL VEB v Boor
L L L L L
R. Hidalgo 11 7 0.636 0.662 0.278 0.05785 0.05596 0.11195
A. Cintron 5 3 0.600 0.657 0.263 0.12000 0.11272 0.21364
B. Roberts 26 14 0.535 0.553 0.296 0.02071 0.02060 0.04193
R. Ibanez 21 10 0.476 0.496 0.279 0.02268 0.02273 0.04584
F. Catalanotto 56 26 0.464 0.472 0.312 0.00829 0.00831 0.01663
R. White 11 5 0.455 0.493 0.265 0.04132 0.04166 0.07917
M. Huff 5 2 0.400 0.485 0.256 0.08000 0.08326 0.17691
F. Thomas 78 30 0.385 0.391 0.299 0.00493 0.00496 0.01053
P. Burrell 10 3 0.300 0.353 0.253 0.03000 0.03265 0.06569
J. Canseco 61 18 0.295 0.305 0.264 0.00484 0.00493 0.00987
B.J. Surhoff 40 10 0.250 0.265 0.250 0.00625 0.00650 0.01338
A. Soriano 8 2 0.250 0.320 0.250 0.03125 0.03628 0.07884
H. Baines 35 7 0.200 0.218 0.240 0.00571 0.00610 0.01282
T. Hafner 10 2 0.200 0.261 0.247 0.02000 0.02411 0.05176
C. Fielder 42 7 0.167 0.183 0.231 0.00397 0.00427 0.00891
S. Posednick 6 1 0.167 0.268 0.247 0.02778 0.03919 0.08835
B. Mueller 23 0 0.000 0.035 0.214 0.00000 0.00146 0.00455
J. Kent 6 0 0.000 0.121 0.240 0.00000 0.01773 0.05075

on its performance in frequentist sense are needed. As a comparison we finally define the accuracy
measure of ML estimator HIML based on Poisson distribution by

ML 91ML
yML = L (3.9)

1 nl

3.3. Anillustrative example

The first three columns of Table 1 shows the record of 18 selected hitters against Mike Mussina who
has been pitching for 16 years. He faced 576 batters 5 or more times through July 23, 2006. The
dataset comes from Stern and Sugano (2007) in which a hierarchical beta-binomial approach has been
used to model the results of batter-pitcher matchups. The number of observed trials is quite small for
any given batter-pitcher combination. Baseball fans and even baseball professionals have a tendency
to draw stroong conclusions based on these small samples without considering the variability in the
ability of a pitcher across different batters. There is considerable variability in the outcomes for
different hitters ranging from Muller who has O hits in 23 attempts to Hidalgo who has 7 hits in 11
attempts.

From column 4 to column 9 we list the estimators of hitting rates for each player with their
accuracy measures. As a comparison the hierarchical Bayes estimator 6% under beta-binomial model,
which was obtained by Stern and Sugano (2007), has been added in column 6. The estimated abilities
of hits by the empirical Bayes method varies according to the observed averages and sample sizes,
i.e., at-bats. We note that Mueller’s lack of success in 23 attempts is reflected by the EB estimate of
success probability 0.035 than the estimate 0.121 for Kent who has had no hits but only 6 attempts
thus far. The estimated accuracy measure by the bootstrap method is about 2 times larger than the
posterior variance. We also note that accuracy of direct ML estimator is very similar to the posterior
variance by the EB estimator.



850 Kwang Mo Jeong

Table 2: The MSE and their estimates when sample sizes are 5 or 10.

Area Sample MSE Estimates of MSE
¢ no. size MSE(@"F) MSE(@F%) mse(6F) mse(0FF) mseBo
4 10 0.11186 0.10363 0.1229 0.09896 0.16545
8 10 0.11772 0.10317 0.1143 0.09123 0.15238
12 10 0.11084 0.09064 0.1256 0.09957 0.16769
3.0 16 10 0.25388 0.19072 0.2258 0.15021 0.21919
20 5 0.27667 0.18210 0.2498 0.17047 0.25498
24 5 0.27013 0.20615 0.2369 0.16007 0.23762
28 5 0.21844 0.15280 0.2369 0.15582 0.22636
4 10 0.11468 0.09323 0.1169 0.07956 0.11606
8 10 0.12300 0.09703 0.1216 0.08545 0.12290
12 10 0.14794 0.11882 0.1107 0.07762 0.11417
5.0 16 10 0.25172 0.17163 0.2526 0.13598 0.16706
20 5 0.23008 0.14537 0.2458 0.14006 0.17976
24 5 0.28415 0.20063 0.2166 0.11923 0.15220
28 5 0.24918 0.14825 0.2486 0.13599 0.17123
4 10 0.12676 0.08268 0.1201 0.07533 0.10234
8 10 0.11767 0.08267 0.1179 0.07275 0.09743
12 10 0.11816 0.08891 0.1226 0.07798 0.10707
7.0 16 10 0.22672 0.13656 0.2255 0.10710 0.12128
20 5 0.18766 0.10571 0.2227 0.10386 0.11667
24 5 0.24471 0.13090 0.2461 0.11957 0.13534
28 5 0.24768 0.13437 0.2282 0.10994 0.12538

4. A Monte Carlo Study

We consider a single covariate and a simple linear predictor of the form n(B;x) = By + S1x. The
covariate values are generated from uniform distribution over the interval (-1, 1). We take the values
of coefficients as By = 0, 81 = 1. The random error ; in the relationship (2.1) is taken from a gamma
distribution with shape ¢ and scale 1/¢. We consider several ¢ values of ¢ = 3.0,5.0,7.0. Finally,
the outcome variate y; has been generated from Poi(#;6;), where 6; = w;y; and log(w;) = Bo + B1x.
Sample sizes of the first design are 5 or 10 and those of second design are 3, 5 and 7 according to area
numbers. Both the number of Monte Carlo iterations and bootstrap replications are taken as R = 500
and B = 500, respectively. The number of areas is N = 30.

We define the approximate true MSE of an estimator of Poisson mean over iterations of simulation.
For an EB estimator #*% the true MSE is defined by

R
A 1 ~ 2
EBY _ EB
MSE (9£*) = = > (055 -6
r=1
Similarly, we can define the true MSE of 8%, which is denoted by MSE(6M"). To compare the

accuracy measures of MSE over iterations we define the estimated mean squared error. Firstly, the
naive MSE estimate of 7% is defined by

R
mse (BF7) = & > Vi,
r=1

where Vfg is an accuracy measure given by (3.5) at the 7" iteration of simulation. Similarly, the MSE

estimate for the #¥" is denoted by mse(6M"), but we simply use a notation mse
MSE using bootstrap samples.

Boot a5 an estimate of
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Table 3: The MSE and their estimates when sample sizes are 3, 5 or 7.

Area Sample MSE Estimates of MSE
¢ no. size MSE(@"F) MSE(@F%) mse(6F) mse(0FF) mseBo
4 7 0.16803 0.13900 0.17629 0.12589 0.19078
8 7 0.17359 0.14171 0.16200 0.11524 0.17236
12 5 0.23700 0.19411 0.23104 0.14844 0.20761
3.0 16 5 0.23069 0.15800 0.24496 0.16380 0.24169
20 5 0.26224 0.19548 0.23608 0.15710 0.23045
24 3 0.35609 0.23632 0.39978 0.22258 0.29130
28 3 0.35049 0.20310 0.38600 0.20529 0.26029
4 7 0.16939 0.10932 0.16661 0.09929 0.12634
8 7 0.11571 0.09905 0.15510 0.09157 0.11643
12 5 0.29023 0.18707 0.23424 0.12209 0.14821
5.0 16 5 0.21735 0.14232 0.22312 0.12350 0.15076
20 5 0.28201 0.17692 0.23736 0.12786 0.15989
24 3 0.39753 0.21148 0.40822 0.17254 0.18718
28 3 0.32953 0.17749 0.36644 0.14948 0.15892
4 7 0.14034 0.09705 0.16384 0.08230 0.10038
8 7 0.16321 0.10604 0.16498 0.08315 0.09897
12 5 0.23447 0.12937 0.22408 0.09618 0.10584
7.0 16 5 0.23121 0.13240 0.23616 0.10457 0.11711
20 5 0.22813 0.13648 0.23536 0.10297 0.11198
24 3 0.38204 0.16442 0.37911 0.11866 0.11685
28 3 0.40735 0.19232 0.40178 0.13544 0.13418

We listed the MSEs of 81~ and #£% with their corresponding estimates according to sample sizes
and values of ¢ in Table 2 and Table 3 The values of MSE(A¥") are larger than those of MSE(#%%)
regardless of ¢ and sample sizes. The MSEs and their estimates have a tendency to decrease as ¢ and
sample sizes increase. Large value of ¢ means that the variability between areas are smaller and hence
we expect more accurate estimation. The estimates mse?°” based on bootstrap samples are about 50%
larger than the mse(#2%) which in general underestimates the true MSE(82%).

5. Conclusion

We considered an EB estimator of mean rate for count data under Poisson-gamma model. The un-
known parameters can be estimated by the ML method which may be implemented through a sub-
routine used in statistical packages such as SAS. As a method to adjust the underestimation incurred
by the posterior variance we also suggested an alternative accuracy measure based on bootstrap sam-
ples.

We explained the suggested method through a practical example of hitting data in baseball games.
We designed an experiment to do a small scale Monte Carlo study according to various values of
inverse dispersion parameter and sample sizes. The bootstrap estimator approximates the true MSE
more closely in contrast to the underestimation by the posterior variance. In this paper we have not
studied the performance of a bootstrap method compared to other approaches such as the jackknife or
Tayor expansion of MSE.

Other kinds of models such as a beta-binomial could be compared with the Poisson-gamma model
in explaining the mean rates of events. An empirical best linear unbiased estimator or hierarchical
Bayes estimators under various models will be good alternatives to the proposed method.
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