• Title/Summary/Keyword: Mean square error

Search Result 2,204, Processing Time 0.035 seconds

A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall Data (MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구)

  • Hong, Suk Young;Na, Sang-Il;Lee, Kyung-Do;Kim, Yong-Seok;Baek, Shin-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • Lack of agricultural information for food supply and demand in Democratic People's republic Korea(DPRK) make people sometimes confused for right and timely decision for policy support. We carried out a study to estimate paddy rice yield in DPRK using MODIS NDVI reflecting rice growth and climate data. Mean of MODIS $NDVI_{max}$ in paddy rice over the country acquired and processed from 2002 to 2014 and accumulated rainfall collected from 27 weather stations in September from 2002 to 2014 were used to estimated paddy rice yield in DPRK. Coefficient of determination of the multiple regression model was 0.44 and Root Mean Square Error(RMSE) was 0.27 ton/ha. Two-way analysis of variance resulted in 3.0983 of F ratio and 0.1008 of p value. Estimated milled rice yield showed the lowest value as 2.71 ton/ha in 2007, which was consistent with RDA rice yield statistics and the highest value as 3.54 ton/ha in 2006, which was not consistent with the statistics. Scatter plot of estimated rice yield and the rice yield statistics implied that estimated rice yield was higher when the rice yield statistics was less than 3.3 ton/ha and lower when the rice yield statistics was greater than 3.3 ton/ha. Limitation of rice yield model was due to lower quality of climate and statistics data, possible cloud contamination of time-series NDVI data, and crop mask for rice paddy, and coarse spatial resolution of MODIS satellite data. Selection of representative areas for paddy rice consisting of homogeneous pixels and utilization of satellite-based weather information can improve the input parameters for rice yield model in DPRK in the future.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue (Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가)

  • Oh, Hye Gyung;Son, Sang Jun;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate beam delivery accuracy for small sized lung SBRT through experiment. In order to assess the accuracy, Eclipse TPS(Treatment planning system) equipped Acuros XB and radiochromic film were used for the dose distribution. Comparing calculated and measured dose distribution, evaluated the margin for PTV(Planning target volume) in lung tissue. Materials and Methods : Acquiring CT images for Rando phantom, planned virtual target volume by size(diameter 2, 3, 4, 5 cm) in right lung. All plans were normalized to the target Volume=prescribed 95 % with 6MV FFF VMAT 2 Arc. To compare with calculated and measured dose distribution, film was inserted in rando phantom and irradiated in axial direction. The indexes of evaluation are percentage difference(%Diff) for absolute dose, RMSE(Root-mean-square-error) value for relative dose, coverage ratio and average dose in PTV. Results: The maximum difference at center point was -4.65 % in diameter 2 cm size. And the RMSE value between the calculated and measured off-axis dose distribution indicated that the measured dose distribution in diameter 2 cm was different from calculated and inaccurate compare to diameter 5 cm. In addition, Distance prescribed 95 % dose($D_{95}$) in diameter 2 cm was not covered in PTV and average dose value was lowest in all sizes. Conclusion: This study demonstrated that small sized PTV was not enough covered with prescribed dose in low density lung tissue. All indexes of experimental results in diameter 2 cm were much different from other sizes. It is showed that minimized PTV is not accurate and affects the results of radiation therapy. It is considered that extended margin at small PTV in low density lung tissue for enhancing target center dose is necessary and don't need to constraint Maximum dose in optimization.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

Recent Trends in Blooming Dates of Spring Flowers and the Observed Disturbance in 2014 (최근의 봄꽃 개화 추이와 2014년 개화시기의 혼란)

  • Lee, Ho-Seung;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The spring season in Korea features a dynamic landscape with a variety of flowers such as magnolias, azaleas, forsythias, cherry blossoms and royal azaleas flowering sequentially one after another. However, the narrowing of south-north differences in flowering dates and those among the flower species was observed in 2014, taking a toll on economic and shared communal values of seasonal landscape. This study was carried out to determine whether the 2014 incidence is an outlier or a mega trend in spring phenology. Data on flowering dates of forsythias and cherry blossoms, two typical spring flower species, as observed for the recent 60 years in 6 weather stations of Korea Meteorological Administration (KMA) indicate that the difference spanning the flowering date of forsythias, the flower blooming earlier in spring, and that of cherry blossoms that flower later than forsythias was 30 days at the longest and 14 days on an average in the climatological normal year for the period 1951-1980, comparing with the period 1981-2010 when the difference narrowed to 21 days at the longest and 11 days on an average. The year 2014 in particular saw the gap further narrowing down to 7 days, making it possible to see forsythias and cherry blossoms blooming at the same time in the same location. 'Cherry blossom front' took 20 days in traveling from Busan, the earliest flowering station, to Incheon, the latest flowering station, in the case of the 1951-1980 normal year, while 16 days for the 1981-2010 and 6 days for 2014 were observed. The delay in flowering date of forsythias for each time period was 20, 17, and 12 days, respectively. It is presumed that the recent climate change pattern in the Korean Peninsula as indicated by rapid temperature hikes in late spring contrastive to slow temperature rise in early spring immediately after dormancy release brought forward the flowering date of cherry blossoms which comes later than forsythias which flowers early in spring. Thermal time based heating requirements for flowering of 2 species were estimated by analyzing the 60 year data at the 6 locations and used to predict flowering date in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species at all 6 locations, showing a feasibility of thermal time as a prognostic tool.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.