• Title/Summary/Keyword: Mean Square Error(MSE)

Search Result 296, Processing Time 0.025 seconds

Performance Comparision of the ADCT-VQ and JPEG for X-ray Image Compression (X-ray 의료영상 압축을 위한 ADCT-VQ와 JPEG의 성능 비교)

  • Kim, K.S.;Lim, H.G.;Kwon, Y.M.;Lee, J.C.;Kim, H.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.29-33
    • /
    • 1992
  • We examine the compression performance of two irreversible (lossy) compression techniques, ADCT-VQ (Adaptive Discrete Cosine Trandform - Vector Quantization) and JPEG (Joint Photographic Experts group) which are basis of medical image information systems. Under the same compression ratio, MSE(Mean Square Error) is 0.578 lower in JPEG than in ADCT-VQ while SNR(Signal to Noise Ratio) is 1.236 dB higher in JPEG than in ADCT-VQ.

  • PDF

Improved k-means Color Quantization based on Octree

  • Park, Hyun Jun;Kim, Kwang Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we present an color quantization method by complementing the disadvantage of K-means color quantization that is one of the well-known color quantization. We named the proposed method "octree-means" color quantization. K-means color quantization does not use all of the clusters because it initializes the centroid of clusters with random value. The proposed method complements this disadvantage by using the octree color quantization which is fast and uses the distribution of colors in image. We compare the proposed method to six well-known color quantization methods on ten test images to evaluate the performance. The experimental results show 68.29 percent of mean square error(MSE) and processing time increased by 14.34 percent compared with K-means color quantization. Therefore, the proposed method improved the K-means color quantization and perform an effective color quantization.

Hardware Implementation of FGNN using Fuzzy Decision Function of the Genetic Algorithm (유전자 알고리즘의 퍼지 결정 함수를 이용한 FGNN 구현)

  • 변오성;문성룡
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.575-583
    • /
    • 2000
  • 본 논문에서 임의의 데이터가 입력되면 기준 영상 중에서 가장 유사도가 큰 영상을 찾아 국부 승리자로 선택하고, 그 국부 승리자 중에서 전체 승리자를 선택하여 최종 출력값을 얻는 계층적 FGNN(Fuzzy Genetic Neural Network)을 제안하고, 이에 하이브리드 퍼지 소속함수와 유전자 알고리즘을 적용하였다. 하이브리드 퍼지 소속함수는 입력 값을 0~1 사이의 값으로 함으로써 시스템의 속도를 빠르게 하고 유전자 알고리즘을 입력값을 일정한 오차 이내로 하여 최적의 영상을 얻도록 하였다. 위의 계층적 FGNN 알고리즘을 회로 설계 및 검증하였다. 또한 제안한 FGNN을 이용하여 영상에 포함된 잡음을 제거하고, 이와 유사한 구조를 가진 FDNN(Fuzzy Decision Neural Network) 성능보다 FGNN의 성능이 우수함을 여러 가지 영상을 통하여 확인하였다. 또한 모의 실험 결과 영상에 대한 평균자승오차(MSE : Mean Square Error)를 비교하였으며, 그 결과 하이브리드 퍼지 함수와 유전자 알고리즘을 적용한 FGNN이 메디안 필터, OC, CO, FDNN 등에 비해 우수함을 확인하였다. FGNN 알고리즘을 Top-Down 방식으로 VHDL(VHSIC Hardware description Language)을 이용하여 코딩(Coding)하고, Synopsys 툴을 이용하여 하드웨어를 설계하였다. 이 알고리즘의 하드웨어는 총 5개의 블록으로 가지고 있고 각각의 블록은 파이프라인 형태로 구성하고, 이는 Synopsys 툴을 이용하여 동작 및 성능을 검증하였다.

  • PDF

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

A Simple Spatial Scheme for Adaptive Antennas in CDMA Systems

  • Su, Pham-Van;Tuan, Le-Minh;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.320-322
    • /
    • 2002
  • A new simple spatial scheme for base station with adaptive antenna in Code Division Multiplexing Access (CDMA) systems is presented. In the proposed scheme, by applying the new spatial structure lot the receiver, the system can debate the problem of which the number of users exceeds the number of adaptive antenna elements existing in the conventional spatial scheme. An adaptive algorithm based on the Mean Square Error (MSE) criterion is also derived to update the weight matrix of the proposed scheme. The results of the system capacity enhancement can be achieved by using the proposed approach. Numerical simulations are included fer illustration and verification.

  • PDF

Modified Constrained Notch Fourier Transform (MCNFT) for Sinusoidal Signals in Noise and Its Performance

  • Xiao, Yegui
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.673-676
    • /
    • 2000
  • Adaptive Fourier analysis of sinusoidal signals in noise is of essential importance in many engineering fields. So far, many adaptive algorithms have been developed for this purpose. In particular, a filter bank based algorithm called constrained notch Fourier transform of its cost-efficiency and easily controllable performance. However, its performance deteriorates when the signal frequencies are not uniformly spaced. This paper proposes, at first, a new structure for the CNFT, referred to as modified CNFT (MCNFT), to compensate the performance degeneration of the CNFT for noisy sinusoidal signals with non-uniformly spaced frequencies. Next, a detailed performance analysis for the MCNFT is conducted. Closed form expression of steady-state mean square error (MSE) for the discrete Fourier coefficients (DFCs) is derived. Extensive simulations are presented to demonstrate the improved performance of the MCNFT and the validity of the analytical results.

  • PDF

Initial codebook generation algorithm considering the number of member training vectors (소속 학습벡터 수를 고려한 초기 코드북 생성 알고리즘)

  • Kim HyungCheol;Cho CheHwang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.259-262
    • /
    • 2002
  • 벡터양자화에서 주어진 학습벡터를 가장 잘 대표할 수 있는 코드벡터의 집합인 코드북을 구하는 것은 가장 중요한 문제이다. 이러한 코드북을 구하는 알고리즘 중에서 가장 대표적인 방법은 K-means 알고리즘으로 그 성능이 초기 코드북에 크게 의존한다는 문제점을 가지고 있어 여러 가지 초기 코드북을 설계하는 알고리즘이 제안되어 왔다. 본 논문에서는 splitting 방법을 이용한 수정된 초기 코드북 생성 알고리즘을 제안하고자 한다. 제안된 방법에서는 기존외 splitting 방법을 적용하여 초기 코드북을 생성하되, 미소분리 과정 시 학습벡터의 수렴 빈도가 가장 낮은 코드벡터를 제거하고 수렴 빈도가 가장 높은 코드벡터를 미소분리 하여 수렴 빈도가 가장 낮은 코드벡터와 대체해가며 초기 코드북을 설계 한다. 제안된 방법의 적용온 기존 방법에서 MSE(mean square error)의 감소율이 가장 작은 미소분리 과정에서 시작하여 원하는 코드북 크기를 얻을 때까지 반복한다. 제안된 방법으로 생성된 초기 코드북을 사용하여 K-means 알고리즘을 수행한 결과 기존의 splitting 방법으로 생성된 초기 코드북을 사용한 경우보다 코드북의 성능이 향상되었다.

  • PDF

A Study on Imputation using Adjusted Cohen Method

  • Chung, Sung-Suk;Chun, Young-Min;Lee, Sun-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.871-888
    • /
    • 2006
  • Many studies have been done to develop procedures to deal with missing values. Most common method is to reassign the other values to the missing data. The purpose of our study is to suggest adjusted Cohen methods and to compare the efficiency of them with other methods through a simulation study. The adjusted Cohen methods use an auxiliary variable to arrange ranking of the variable with missing values. It leads to a reduced mean square error(MSE) compared with the Cohen method.

  • PDF

Reconstruction of surface spectral reflectance using RGB digital color signals

  • 방상택;곽한봉;서봉우;이철희;안석출
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.49-52
    • /
    • 2000
  • The Estimation method for spectral reflectance of the object using five-band and nine-band have been developed. The five-band acquisition are required of five or three times same work for color image acquisition process. To solve the above problems, we proposed a new method that can be reconstructed spectral reflectance of object. The proposed method was to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The reconstruction of spectral reflectance was examined by computer simulation, and evaluated by MSE(Mean Square Error) and color difference between the original and reconstructed spectral reflectance.

  • PDF

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.