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AbstractAbstractAbstractAbstract

Many studies have been done to develop procedures to deal with
missing values. Most common method is to reassign the other values to
the missing data. The purpose of our study is to suggest adjusted Cohen
methods and to compare the efficiency of them with other methods
through a simulation study. The adjusted Cohen methods use an auxiliary
variable to arrange ranking of the variable with missing values. It leads
to a reduced mean square error(MSE) compared with the Cohen method.
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1. Introduction1. Introduction1. Introduction1. Introduction

Most statistical analyses are performed by complete data but missing values

almost always exist in real data. Missing data may occur due to different reasons

such as death of patients, equipment malfunctions, refusal of respondents to

answer certain questions, and so on. If we don't include all the observations with

missing values, the loss of information might be significant. This approach also

ignores the possible systematic difference between the complete cases and

incomplete cases, and the resulting inference may not be appropriate, especially
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when the missing rate of data is high. Therefore many studies have been done to

develop procedures to deal with missing values.

There are two types of nonresponse: unit nonresponse, in which the entire

observation unit is missing, and item nonresponse, in which more than one item is

missing for an observation unit. One of the most common methods to deal with

unit nonresponse is weighting adjustment which is to reassign the weights of the

nonresponse to the response. Common methods for item nonresponse are

imputation methods. Imputation is a general and flexible method for handling

missing data problems. Imputation is a procedure that replaces the missing values

in a data set by predicted or simulated values. The basic object of imputation is

to allow end users to apply their existing analysis tools to any dataset with

missing values using the same command structure and output standards as if

there were no missing data.

Imputation methods are divided into single imputation and multiple imputation.

Single imputation substitutes a value for each missing value, so it is easy to use

and simple, but it has serious drawbacks like reduction variance. Multiple

imputation replaces each missing value with more than one value to represent

imputation uncertainty. It offers valid result but it is a burden to impute missing

values and analysis for several times.

The purpose of this study is to suggest adjusted Cohen methods and to

compare the efficiency of them with other methods through a simulation study.

The adjusted Cohen methods use an auxiliary variable to arrange ranking of the

variable with missing values. It leads to a reduced mean square error(MSE)

compared with the Cohen method. Cohen(1996) proposed a new approach that

complements the underestimation variance of mean imputation, but it tends to

inflate the MSE. We are not concerned here with categorical variables involving

missing values.

This study consists of five sections. Section 1 reviews the missing data

problems. Section 2 explains missing data mechanisms and patterns. Missing data

mechanisms are MCAR, MAR and NMAR and missing data patterns are

monotone and arbitrary. Section 3 discusses several imputation methods that are

mean imputation, cohen method, regression imputation, and multiple imputation.

Section 4 suggests the adjusted Cohen methods and reports the results of a

simulation study. Section 5 comments about conclusions and future directions.
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2. Missing Mechanisms and Patterns2. Missing Mechanisms and Patterns2. Missing Mechanisms and Patterns2. Missing Mechanisms and Patterns

2.1 Missing Mechanisms2.1 Missing Mechanisms2.1 Missing Mechanisms2.1 Missing Mechanisms

Missing mechanisms concern the relationship between missingness and the

values of variables in the data matrix. These are MCAR, MAR and NMAR(Little

and Rubin(2002)).

The missing data for a variable Y is "Missing Completely at Random(MCAR)",

if the probability of having a missing value for Y is unrelated to the value of Y

itself or any other variable in the data set.

For example, income is MCAR, if two conditions are satisfied. One is that

people who do not report their income have, on the average, the same income as

people who do report income. The other is that each of the other variables in the

data set would have to be the same, on average, for the people who did not

report their income and the people who did report their income. MCAR is the best

situation to treat the missing data.

The missing data for a variable Y is "Missing At Random(MAR)", if the

probability of the missing data of Y is unrelated to the value of Y, but to other

variables. MCAR is a special type of MAR and MAR is much weaker assumption

than MCAR.

For example, income is MAR, if the probability of missing data of income

depends on martial status, but within each category of martial status, the

probability of missing data on income is unrelated to the value of income. MAR

and MCAR are ignorable missingness.

The missing data for a variable Y is "Not Missing at Random(NMAR)", if the

probability of missing data of Y is related to the actual value of the missing data.

For example, if high income households are less likely to report their income

even after adjusting for other variables, then the probability of missing income is

not ignorable. This is the most difficult condition to modeling.

2.2 Missing Data Patterns2.2 Missing Data Patterns2.2 Missing Data Patterns2.2 Missing Data Patterns

Missing data patterns describe which values are observed in the data matrix

and which are missing(Little and Rubin(2002)). A data set is said to have

monotone missing patterns when the missing particular variable  implies that

all subsequent variables  are all missing, for   . Simpler imputation

methods can be used, if the missing data patterns are monotone, however a

monotone pattern is uncommon in most real data.

In an arbitrary pattern, missing data can occur anywhere. The MCMC

algorithm, introduced in section 3.4.1, is appropriate for missing data which has an
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arbitrary pattern. Another way to handle a missing data set with an arbitrary

pattern is to use the MCMC algorithm to impute enough values to make the

missing data patterns monotone. Then, a simpler imputation method can be used.

3. Imputation Methods3. Imputation Methods3. Imputation Methods3. Imputation Methods

3.1 Mean Imputation3.1 Mean Imputation3.1 Mean Imputation3.1 Mean Imputation

Mean imputation is the simplest and the oldest method. This method replaces

missing values with the mean of observed values. The mean is formed in

conditional or unconditional situation.

The mean of the observed values is given as     

 

. With

unconditional mean imputation, the mean estimator is given as



       

and the variance estimator is given as


  

      
  

  
. The notation  is  random

variable,  is sample size,  is a number of observed values of .

Under MCAR assumption,  is unbiased but biased in general and the

variance estimator underestimates the variance by a factor of

     . The covariance is also underestimated by this method and

if the variables are highly correlated, this method cannot be recommended.

Conditional mean imputation first uses some auxiliary variables to form

adjustment classes, and then replaces missing values in each class with its sample

mean.

3.2 Cohen Method3.2 Cohen Method3.2 Cohen Method3.2 Cohen Method

Cohen(1996) suggested an approach that makes use of imputed values

distributed more diffusely than the observed data. For example, instead of

imputing the mean for all the missing values, half of the missing values are

imputed by   
 and the other half by

  
 , where 


   

. This

approach is effective to adjust reduced variance of mean imputation.
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3.3 Regression Imputation3.3 Regression Imputation3.3 Regression Imputation3.3 Regression Imputation

The idea of this method is that missing values are replaced by predicted values

derived from a regression model. In regression imputation, missing values of a

variable  are imputed by predicted values from the regression of  on

⋯  ⋯  , based on the  complete cases, where

⋯  ⋯  are fully observed and  is observed for the 
observations. The result equation is given as

  ⋯ ⋯ .

This method requires a model and assumes that missing data are MAR. The

drawback of regression imputation is that this inflates correlations and becomes

difficult in multivariate data when more than one variable has missing values, i.e.

a data set that has multiple missing.

The stochastic regression imputation method replaces a missing value by a

value predicted by regression imputation plus a random error. The form of the

equation is like  where  is a random value from a normal distribution

with zero mean and the variance equal to the residual variance in the

regression.

3.4 Multiple Imputation3.4 Multiple Imputation3.4 Multiple Imputation3.4 Multiple Imputation

Multiple imputation is one of the most attractive methods for general purpose

handling of missing data in multivariate analysis. It is first proposed by

Rubin(1976) and elaborated in his(1987) book. Rubin described multiple imputation

as a three-step process.

Step 1 : The missing data are imputed in m times to generate m complete･
data sets.

Step 2 : The m complete data sets are analyzed by using standard statistical･
analysis.

Step 3 : The results from the m complete data sets are combined to produce･
one overall analysis.

Multiple imputation requires MAR or MCAR assumption and represents a

random sample of the missing values rather than attempting to estimate each

missing value.

This process results in valid statistical inferences that precisely reflect the

uncertainty due to missing values. Uncertainty is accounted by creating different

versions of the missing data and observing the variability between imputed data
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sets. The disadvantage of multiple imputation is that it takes more work to create

the imputations and analyze the results than single imputation and the statistical

principles behind multiple imputation are not trivial.

3.4.1 Imputation step using Markov Chain Monte Carlo(MCMC)3.4.1 Imputation step using Markov Chain Monte Carlo(MCMC)3.4.1 Imputation step using Markov Chain Monte Carlo(MCMC)3.4.1 Imputation step using Markov Chain Monte Carlo(MCMC)

In the imputation step, a variety of imputation methods have been used. The

method of choice relies upon the type of missing data patterns. For an monotone

missing data pattern, simple methods have been proposed. Propensity methods or

predictive mean matching is appropriate for continuous variables and discriminant

analysis or logistic regression for discrete variables. For an arbitrary missing data

pattern, the Markov Chain Monte Carlo(MCMC) that assumes multivariate normal

distribution has been suggested.

A Markov chain is a sequence of random variables in which the distribution of

each element depends on the value of the previous one.

The first step computes mean vector and covariance matrix from the data that

does not have missing values to estimate the prior distribution. Next, the

imputation step simulates values for missing values by randomly selecting a value

from the available distribution of values. The posterior steps recomputes mean

vector and covariance matrix with the imputed values from the imputation step.

This is posterior distribution. Imputation step and posterior step are iterated until

mean vector and covariance matrix are unchanging as we iterate.

When we denote the variables with missing values for observation i by

   and the variables with observed values by  , the imputation step

draws     from   
   with a current parameter estimate   at

  iteration. The posterior step draws     from   
   
  . This

creates a Markov chain    
      

  ⋯   
       

  ⋯,

which converges in distribution to     .

3.4.2 Combination results3.4.2 Combination results3.4.2 Combination results3.4.2 Combination results

Combining inference from the imputed data sets is done using rules conformed

by Rubin(1987). Rubin detailed that combining the estimates of the point and

variance for a parameter of interest. When  and  are the point and

variance estimates from the th imputed data set,      , the point

estimate for  from multiple imputation is the average of the  complete data

estimates :   
 



 .
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The total variance is expressed by the formula    

, where

  
 



, 

  



 
.  is the "within imputation variance"

and B is the "between imputation variance". The former means the natural

variability and the latter estimates uncertainty caused by missing data.

3.4.3 Multiple imputation efficiency3.4.3 Multiple imputation efficiency3.4.3 Multiple imputation efficiency3.4.3 Multiple imputation efficiency

When we generate  complete sets, we have to determine how many.

Then, we can consult the relative efficiency of an estimate based on 
imputation which is showed by Rubin(1987,p.114). The relative efficiency(RE)

is approximately given as a function of  and .    

 , where

        
  

     
 


,     

 
. The ratio 

is called the relative increase in variance due to nonresponse and  is the

rate of missing information for the quantity being estimated(Rubin, 1987). The

following Table 1 shows the RE with different value of  and . Surprisingly,

for cases with little missing information, only 3 10 imputations are enough.～

m  .1 .2 .3 .5 .7

3 0.9677 0.9375 0.9091 0.8571 0.8108

5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346

20 0.9950 0.9901 0.9852 0.9756 0.9662

<Table 1> Relative efficiency

Besides there are hot deck imputation, cold deck imputation, ratio imputation,

and EM algorithm, etc. With hot deck imputation, missing values are replaced by

values from the responding units in the sample that are derived sequentially,

hierarchically or via a distance function. In the cold deck method, missing values

are replaced by values from an external source, such as a value from a previous

result of the same survey. In ratio imputation, 
 

  
  is used as

imputed values for the -th missing value. This ratio imputation may provide

very precise imputation if the missingness of  mainly depends on a highly

correlated an auxiliary variable  . The EM algorithm is a very general
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iterative algorithm for maximum likelihood estimation in an incomplete data

problem(Little and Rubin(1987)). This method replaces the missing values by

using observed values and a parameter and then reestimates the parameter

based on observed values and the imputed values until iterating converges.

4. Adjusted Cohen Methods and a Simulation Study4. Adjusted Cohen Methods and a Simulation Study4. Adjusted Cohen Methods and a Simulation Study4. Adjusted Cohen Methods and a Simulation Study

4.1 Adjusted Cohen Methods4.1 Adjusted Cohen Methods4.1 Adjusted Cohen Methods4.1 Adjusted Cohen Methods

We reviewed the imputation methods. According to Scheffer(2002), multiple

imputation is always better than case deletion or single imputation. Also many

statistical software packages support multiple imputation. However, Horton and

Lipsitz(2001) mentioned that none of the packages are clearly superior and they

remain in large part of a complicated black box whose output can be difficult to

interpret it in their study. This ultimately makes end users shun its use.

Therefore, this study proposes a new approach that improves drawback of single

imputation. The Cohen method was introduced in 3.2. This approach complements

the underestimation of variance that is the chief drawback of mean imputation.

However, this method has a result even worse than mean imputation when

comparing mean square error(MSE). It leads to inflation of MSE. Moreover, it

tends to overestimate variance under MCAR assumption and it is not effective to

adjust estimates of means.

This study suggests adjusted Cohen methods. This approach uses an auxiliary

variable to arrange ranking of the variable with missing values, under the

assumption that the auxiliary variable is fully observed. The missing values are

imputed by more diversified values after sorting the variable with missing values

by an auxiliary variable. Following figures show adjusted Cohen methods.

The first, two values can be used to impute like Cohen method. This method is

diagrammed as figure 1. In the adjusted Cohen method 1, if a missing value is

within the first 50% of ranking, the missing value is imputed by

  
.

The second, mean of observed values can be added. This makes the adjusted

Cohen method 2. The adjusted Cohen method 3 and 4 use four different values to

impute, but percentage of ranking is unlike. The adjusted Cohen method 5 and 6

use five different values involving the mean of the observed values to impute, but

also percentage of ranking is unlike. However, we have to conform that the

variable with missing values has positive correlation with the auxiliary variable; if

negative correlation exists, we can convert a sign between  
and
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 
 or 





.

The adjusted Cohen methods lower MSE and are useful to complement

overestimation of variance under MCAR assumption. Mean estimates of the

adjusted Cohen methods are mediated under MAR and NMAR, while the Cohen

method has the same mean estimate with mean imputation. These methods don't

need a model like regression imputation, and can also be used in multiple missing

unless there is no variable to use as an auxiliary variable.

In the next section, a simulation study is performed to compare the efficiency of

each adjusted Cohen method and with other imputation methods.
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Adjusted Cohen method 2
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Adjusted Cohen method 3



Sung-Suk Chung Young-Min Chun Sun-Kyung Lee․ ․880

20%

30%

30%

20%

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
+

20%

30%

30%

20%

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
+

<Figure 4>

Adjusted Cohen method 4

20%

20%

20%

20%

20%

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
−

)(obsjy

20%

20%

20%

20%

20%

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj

D
n

nn
y

1

1

2

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj

D
n

nn
y

1

1
)(

−

−+
−

)(obsjy

<Figure 5>

Adjusted Cohen method 5

10%

30%

20%

30%

10%

obs

obs

obs
obsj D

n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj D

n

nn
y

1

1
)(

−

−+
−

)(obsjy

10%

30%

20%

30%

10%

obs

obs

obs
obsj D

n

nn
y

1

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
+

obs

obs

obs
obsj D

n

nn
y

1

1

2

1
)(

−

−+
−

obs

obs

obs
obsj D

n

nn
y

1

1
)(

−

−+
−

)(obsjy

<Figure 6>

Adjusted Cohen method 6

4.2 A Simulation Study4.2 A Simulation Study4.2 A Simulation Study4.2 A Simulation Study

4.2.1 Simulation design4.2.1 Simulation design4.2.1 Simulation design4.2.1 Simulation design

(1) Data

Simulation is performed by Iris data and generated data. Table 2 shows detailed

information.

data number of unit variables

Iris
150 (50 units of

each of 3 species )

sepal length(SL)･ sepal width(SW)･
petal length(PL)･ petal width(PW)･
species of iris (categorical variable)･

Generated 1000
･ ∼     ･ ∼    ･ ∼    
･      , where ∼   

<Table 2> Simulation design of data
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(2) Missing mechanisms

Simulation is performed under MCAR, MAR, and NMAR assumptions. Sepal

length of Iris data is missing in the first simulation, petal length is missing in the

second and  of generated data is missing in the third. Table 3 shows detail

information. With notes, 'depends on PL' means sepal length of Iris data is

first sorted by petal length and then omitted as missing rate. This simulation

design is referred by the literature of Allison(2000), Horton and Lipsitz(2001)

and Scheffer(2002). The simulation using Iris data is done separately, because

the distributions of sepal length and petal length have different shapes.

data mechanisms
variable with
missing values

notes

Iris

MCAR SL PL･ ･ missing randomly, each 1000 times･
MAR SL PL･ ･ depends on PL depends on PW･ ･
NMAR SL PL･ ･ depends on itself･

Generated

MCAR ･  missing randomly, each 1000 times･
MAR ･  depends on･ 

NMAR ･  depends on itself･

<Table 3> Simulation missing mechanisms

(3) Missing rates

The simulation is done with seven types of missing rates, 5, 10, 15, 20, 30, 40,

50 percent, for each of the missing mechanisms and data.

A simulation was done to compare results of adjusted Cohen methods. We

compared the imputation methods in terms of the mean and standard deviation of

data and mean square error of imputed values.

Table 4 and Table 5 presents the mean, standard deviation and MSE(mean

square error) of adjusted Cohen methods of Iris sepal length data. In MCAR,

adjusted Cohen6 has the best result - nearest mean, nearest standard deviation

and smallest MSE. Also, in MAR and NMAR, adjusted Cohen1 gives the best

result. Simulation of Iris petal length data and generated data were also performed

and the results were similar to the result of Iris sepal length data. Therefore, in

this study, we employed adjusted Cohen6 for MCAR and adjusted Cohen1 for

MAR and NMAR.

(4) Imputation methods

Five imputation methods are used, which are multiple imputations using MCMC

algorithm, regression imputation, mean imputation, Cohen method and adjusted

Cohen method.
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A-Cohen
Mean SD

0% 5% 10% 15% 20% 30% 40% 50% 0% 5% 10% 15% 20% 30% 40% 50%

MCAR

1 5.843 5.842 5.843 5.842 5.842 5.843 5.842 5.838 0.828 0.847 0.872 0.895 0.922 0.986 1.065 1.167

2 5.843 5.842 5.842 5.841 5.840 5.839 5.837 5.835 0.828 0.835 0.846 0.858 0.871 0.908 0.956 1.026

3 5.843 5.842 5.842 5.842 5.841 5.841 5.839 5.837 0.828 0.832 0.840 0.848 0.858 0.886 0.927 0.989

4 5.843 5.842 5.843 5.843 5.842 5.843 5.842 5.840 0.828 0.830 0.834 0.838 0.845 0.866 0.898 0.950

5 5.843 5.842 5.843 5.842 5.842 5.843 5.842 5.841 0.828 0.828 0.829 0.832 0.836 0.851 0.877 0.922

6 5.843 5.842 5.843 5.842 5.841 5.843 5.842 5.841 0.828 0.819 0.814 0.809 0.805 0.804 0.810 0.831

MAR

1 5.843 5.827 5.835 5.837 5.844 5.891 5.973 5.962 0.828 0.838 0.826 0.820 0.808 0.755 0.673 0.665

2 5.843 5.827 5.835 5.837 5.844 5.891 6.019 6.113 0.828 0.838 0.826 0.820 0.808 0.755 0.665 0.648

3 5.843 5.827 5.835 5.837 5.844 5.916 6.045 6.089 0.828 0.838 0.826 0.820 0.808 0.739 0.631 0.600

4 5.843 5.827 5.835 5.837 5.844 5.945 6.071 6.116 0.828 0.838 0.826 0.820 0.808 0.718 0.612 0.582

5 5.843 5.827 5.835 6.004 5.844 5.945 6.071 6.168 0.828 0.838 0.826 0.820 0.808 0.718 0.612 0.589

6 5.843 5.827 5.835 5.864 5.900 5.998 6.121 6.219 0.828 0.838 0.826 0.797 0.761 0.675 0.573 0.544

NMAR

1 5.843 5.803 5.772 5.751 5.721 5.655 5.555 5.416 0.828 0.754 0.710 0.682 0.646 0.593 0.528 0.491

2 5.843 5.803 5.766 5.732 5.685 5.605 5.495 5.371 0.828 0.754 0.706 0.672 0.630 0.568 0.490 0.427

3 5.843 5.803 5.766 5.732 5.694 5.617 5.502 5.364 0.828 0.754 0.703 0.666 0.625 0.560 0.477 0.418

4 5.843 5.803 5.766 5.732 5.691 5.605 5.492 5.353 0.828 0.754 0.703 0.666 0.622 0.551 0.470 0.410

5 5.843 5.753 5.766 5.729 5.682 5.592 5.480 5.346 0.828 0.754 0.703 0.665 0.621 0.548 0.464 0.397

6 5.843 5.803 5.759 5.716 5.661 5.561 5.445 5.312 0.828 0.754 0.697 0.653 0.602 0.521 0.434 0.367

<Table 4> Mean and SD of adjusted Cohen methods

A-Cohen 5% 10% 15% 20% 30% 40% 50%

MCAR

1 0.027 0.061 0.091 0.128 0.212 0.318 0.462

2 0.015 0.033 0.051 0.070 0.116 0.174 0.251

3 0.012 0.027 0.041 0.057 0.094 0.139 0.203

4 0.011 0.024 0.036 0.051 0.082 0.120 0.173

5 0.009 0.019 0.029 0.041 0.065 0.095 0.136

6 0.007 0.016 0.024 0.033 0.050 0.068 0.091

MAR

1 0.017 0.018 0.023 0.030 0.043 0.093 0.133

2 0.017 0.018 0.023 0.030 0.043 0.133 0.213

3 0.017 0.018 0.023 0.030 0.064 0.157 0.199

4 0.017 0.018 0.023 0.030 0.080 0.184 0.231

5 0.017 0.018 0.023 0.030 0.080 0.184 0.273

6 0.017 0.018 0.034 0.056 0.125 0.246 0.346

NMAR

1 0.035 0.060 0.078 0.105 0.185 0.314 0.511

2 0.035 0.071 0.107 0.159 0.254 0.392 0.567

3 0.035 0.067 0.098 0.135 0.224 0.364 0.557

4 0.035 0.060 0.098 0.138 0.234 0.378 0.573

5 0.035 0.067 0.103 0.154 0.257 0.399 0.586

6 0.035 0.075 0.119 0.180 0.297 0.452 0.647

<Table 5> MSE of adjusted Cohen methods

4.2.2 Simulation results4.2.2 Simulation results4.2.2 Simulation results4.2.2 Simulation results

Table 6 shows the mean and standard deviation when there are diverse missing

ratio, under the various missing mechanisms. The first column represents the

mean and standard deviations when the data are complete.

In common, as missing rate increases, standard deviations are decreased
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seriously and means are also affected except for the MCAR assumption.

(1) The results of Iris Sepal length data

The mean, standard deviation and MSE of Iris sepal length data are represented

in Table 7 and Table 8. Under MCAR, all of these methods estimate the true

mean very well. Even at 50% missing, all means are within 1% of the target

value. In the MAR

data 0% 5% 10% 15% 20% 30% 40% 50%

Iris SL

Mean

MCAR 5.843 5.843 5.843 5.842 5.841 5.843 5.843 5.843

MAR 5.843 5.882 5.950 6.004 6.069 6.212 6.367 6.477

NMAR 5.843 5.753 5.674 5.612 5.541 5.411 5.285 5.158

SD

MCAR 0.828 0.827 0.828 0.827 0.826 0.825 0.826 0.826

MAR 0.828 0.820 0.791 0.773 0.750 0.687 0.605 0.595

NMAR 0.828 0.738 0.680 0.643 0.600 0.535 0.459 0.392

Iris PL

Mean

MCAR 3.758 3.757 3.757 3.756 3.760 3.757 3.763 3.768

MAR 3.758 3.874 4.019 4.155 4.340 4.751 5.050 5.221

NMAR 3.758 3.622 3.484 3.364 3.221 2.950 2.640 2.269

SD

MCAR 1.765 1.724 1.673 1.629 1.578 1.472 1.361 1.243

MAR 1.765 1.725 1.666 1.601 1.478 1.064 0.732 0.670

NMAR 1.765 1.694 1.642 1.602 1.552 1.470 1.357 1.174

generated

Mean

MCAR 11.044 11.043 11.043 11.048 11.044 11.044 11.041 11.050

MAR 11.044 11.355 11.609 11.827 12.080 12.528 13.009 13.412

NMAR 11.044 10.601 10.257 9.954 9.667 9.109 8.533 7.938

SD

MCAR 3.916 3.916 3.917 3.914 3.917 3.917 3.911 3.917

MAR 3.916 3.732 3.616 3.549 3.438 3.313 3.190 3.212

NMAR 3.916 3.473 3.234 3.068 2.932 2.706 2.490 2.302

<Table 6> Mean and SD of Iris SL, Iris PL and generated data

Mean SD

0% 5% 10% 15% 20% 30% 40% 50% 0% 5% 10% 15% 20% 30% 40% 50%

M

C

A

R

MCMC 5.843 5.843 5.842 5.840 5.844 5.838 5.843 5.844 0.828 0.828 0.831 0.831 0.831 0.836 0.837 0.845

Reg 5.843 5.843 5.843 5.842 5.842 5.842 5.842 5.840 0.828 0.825 0.822 0.819 0.816 0.810 0.805 0.800

Mean 5.843 5.843 5.843 5.842 5.841 5.843 5.843 5.843 0.828 0.808 0.785 0.763 0.738 0.690 0.638 0.582

Cohen 5.843 5.835 5.835 5.842 5.841 5.834 5.843 5.833 0.828 0.847 0.872 0.895 0.923 0.987 1.066 1.168

A-Cohen6 5.843 5.842 5.843 5.842 5.841 5.843 5.842 5.841 0.828 0.819 0.814 0.809 0.805 0.804 0.810 0.831

M

A

R

MCMC 5.843 5.831 5.829 5.817 5.815 5.728 5.594 5.617 0.828 0.837 0.845 0.861 0.864 0.968 1.135 1.111

Reg 5.843 5.832 5.832 5.827 5.823 5.788 5.682 5.659 0.828 0.833 0.834 0.839 0.841 0.878 0.991 1.007

Mean 5.843 5.882 5.950 6.004 6.069 6.212 6.367 6.477 0.828 0.801 0.750 0.713 0.670 0.574 0.467 0.419

Cohen 5.843 5.874 5.942 6.004 6.069 6.205 6.367 6.470 0.828 0.840 0.834 0.837 0.838 0.821 0.781 0.842

A-Cohen1 5.843 5.827 5.835 5.837 5.844 5.891 5.973 5.962 0.828 0.838 0.826 0.820 0.808 0.755 0.673 0.665

N

M

A

R

MCMC 5.843 5.823 5.800 5.767 5.739 5.686 5.643 5.621 0.828 0.793 0.765 0.724 0.696 0.653 0.626 0.628

Reg 5.843 5.821 5.795 5.764 5.731 5.676 5.624 5.562 0.828 0.787 0.748 0.713 0.676 0.624 0.585 0.546

Mean 5.843 5.753 5.674 5.612 5.541 5.417 5.285 5.158 0.828 0.721 0.644 0.594 0.536 0.447 0.355 0.276

Cohen 5.843 5.746 5.667 5.612 5.541 5.411 5.285 5.154 0.828 0.756 0.716 0.696 0.671 0.640 0.593 0.555

A-Cohen1 5.843 5.803 5.772 5.751 5.721 5.655 5.555 5.416 0.828 0.754 0.710 0.682 0.646 0.593 0.528 0.491

<Table 7> Mean and SD of Iris SL data
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5% 10% 15% 20% 30% 40% 50%

MCAR

REG 0.004 0.010 0.014 0.020 0.031 0.041 0.052

MEAN 0.032 0.069 0.102 0.141 0.210 0.280 0.350

Cohen 0.048 0.098 0.142 0.198 0.320 0.469 0.668

A-Cohen6 0.007 0.016 0.024 0.033 0.050 0.068 0.091

MAR

REG 0.009 0.011 0.013 0.017 0.023 0.915 0.996

MEAN 0.045 0.133 0.202 0.287 0.493 0.743 0.914

Cohen 0.081 0.270 0.382 0.514 0.760 1.042 1.188

A-Cohen1 0.017 0.018 0.023 0.030 0.043 0.093 0.133

NMAR

REG 0.013 0.030 0.052 0.071 0.127 0.197 0.289

MEAN 0.173 0.298 0.386 0.489 0.668 0.872 1.080

Cohen 0.262 0.473 0.608 0.766 1.062 1.321 1.601

A-Cohen1 0.035 0.060 0.078 0.105 0.185 0.314 0.511

<Table 8> MSE of Iris SL data

case, adjusted Cohen, regression and MCMC methods hold true values up to 50%

missing within a 5% level. In NMAR, regression and MCMC methods are

acceptable up to 50% missing while mean and Cohen methods are valid in 15%

missing. The adjusted Cohen method is good up to 40% missing.

Under MCAR, the outcome of standard deviation is fine for regression, adjusted

Cohen and MCMC methods. Mean imputation underestimates standard deviation

while Cohen method overestimates it. In MAR, Cohen method is considered as the

best, and the adjusted Cohen method is good up to 20%missing, also MCMC and

regression methods are fine up to 20% missing. In NMAR, only regression and

MCMC methods preserve the variance up to 5% missing.

The feature of MSE is that it inflates as the missing rate goes up. Under all

missing mechanisms, the Cohen method has the worst outcome while regression

method has the best, except in the MAR case. At 40% and 50% missing, MSE of

regression method inflates suddenly, but for the adjusted Cohen method, it

increases gradually in MAR.

(2) The results of Iris Petal length data

Table 9 and Table 10 indicates the mean, standard deviation and MSE of Iris

petal length data. Under MCAR, all methods estimate the true value within 1%

level up to 50% missing like the case of Iris sepal length data. In MAR, at 5%

missing, all methods are fine, but mean and Cohen method are not recommended,

with over 5% missing. The adjusted Cohen method has a reasonable value up to

20% missing, with reg, up to 30% missing and with MCMC, up to 40% missing.

In NMAR case, MCMC has excellent accuracy up to 40% missing, as does the

regression method. The adjusted Cohen method also can be attractive up to 30%

missing.

Under MCAR, there is almost no change in standard deviation with regression,

MCMC method and adjusted Cohen method, while the mean method
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underestimates it and the Cohen method overestimates it. In MAR, mean method

has the worst result, at the 50% missing. It has a 70% loss in standard deviation.

MCMC and regression are good up to 30% missing. Cohen method and adjusted

Cohen method are fine up to 15% missing. Under NMAR, Cohen method is valid

up to 40% missing, the MCMC up to 20% missing, regression and the adjusted

Cohen up to 15% missing.

The adjusted Cohen method remarkably lowers MSE, at least 40%, in

comparison with the Cohen method. Regression method has the best outcome.

Mean SD

0% 5% 10% 15% 20% 30% 40% 50% 0% 5% 10% 15% 20% 30% 40% 50%

M

C

A

R

MCMC 3.758 3.758 3.756 3.757 3.758 3.756 3.761 3.759 1.765 1.766 1.769 1.772 1.773 1.782 1.791 1.808

Reg 3.758 3.749 3.758 3.765 3.770 3.764 3.746 3.788 1.765 1.756 1.759 1.764 1.759 1.754 1.738 1.766

Mean 3.758 3.757 3.757 3.756 3.760 3.757 3.763 3.768 1.765 1.724 1.673 1.629 1.578 1.472 1.361 1.243

Cohen 3.758 3.741 3.740 3.756 3.760 3.738 3.763 3.747 1.765 1.808 1.860 1.910 1.974 2.106 2.273 2.494

A-Cohen6 3.758 3.757 3.757 3.757 3.758 3.756 3.760 3.762 1.765 1.753 1.740 1.732 1.726 1.721 1.737 1.783

M

A

R

MCMC 3.758 3.752 3.748 3.736 3.740 3.732 3.932 3.991 1.765 1.774 1.782 1.799 1.796 1.815 1.583 1.518

Reg 3.758 3.754 3.752 3.743 3.740 3.765 4.601 4.624 1.765 1.769 1.772 1.784 1.789 1.758 0.803 0.784

Mean 3.758 3.874 4.019 4.155 4.340 4.751 5.050 5.221 1.765 1.684 1.579 1.478 1.321 0.888 0.565 0.472

Cohen 3.758 3.857 4.003 4.155 4.340 4.740 5.050 5.213 1.765 1.767 1.756 1.733 1.653 1.271 0.945 0.948

A-Cohen1 3.758 3.759 3.777 3.809 3.897 4.254 4.572 4.641 1.765 1.763 1.739 1.698 1.592 1.170 0.814 0.749

N

M

A

R

MCMC 3.758 3.743 3.741 3.739 3.739 3.830 3.926 4.007 1.765 1.745 1.747 1.746 1.752 1.860 1.960 2.043

Reg 3.758 3.733 3.710 3.690 3.663 3.659 3.611 3.448 1.765 1.728 1.701 1.679 1.652 1.654 1.612 1.468

Mean 3.758 3.622 3.484 3.364 3.221 2.950 2.640 2.269 1.765 1.653 1.557 1.479 1.387 1.228 1.049 0.827

Cohen 3.758 3.606 3.468 3.364 3.221 2.935 2.640 2.255 1.765 1.734 1.731 1.734 1.735 1.757 1.752 1.660

A-Cohen1 3.758 3.735 3.722 3.710 3.686 3.636 3.495 3.148 1.765 1.731 1.714 1.699 1.671 1.616 1.527 1.407

<Table 9> Mean and SD of Iris SL data

5% 10% 15% 20% 30% 40% 50%

MCAR

REG 0.003 0.007 0.010 0.014 0.022 0.030 0.038

MEAN 0.144 0.316 0.463 0.630 0.955 1.276 1.589

Cohen 0.174 0.318 0.269 0.248 0.383 1.469 2.163

A-Cohen6 0.030 0.065 0.095 0.130 0.198 0.271 0.362

MAR

REG 0.001 0.005 0.009 0.014 0.020 2.083 2.158

MEAN 0.291 0.688 1.089 1.711 3.319 4.476 5.048

Cohen 0.492 1.175 1.877 2.677 4.085 4.675 4.671

A-Cohen1 0.001 0.005 0.023 0.103 0.836 1.946 2.309

NMAR

REG 0.015 0.028 0.041 0.066 0.083 0.115 0.261

MEAN 0.399 0.765 1.082 1.481 2.263 3.274 4.662

Cohen 0.820 1.554 2.118 2.865 4.467 6.078 7.859

A-Cohen1 0.014 0.024 0.037 0.059 0.125 0.387 1.265

<Table 10> MSE of Iris SL data

(3) The results of generated data

Table 11 and Table 12 presents the mean of generated data. Under MCAR, the

result is similar as the previous one. All methods are fine up to 50% missing. In



Sung-Suk Chung Young-Min Chun Sun-Kyung Lee․ ․886

MAR, adjusted Cohen, regression and MCMC methods estimate true mean up to

50% missing. In the NMAR case, MCMC has the best effect up to 50% missing.

Regression method and adjusted Cohen methods are fine up to 40% missing

respectively.

Mean SD

0% 5% 10% 15% 20% 30% 40% 50% 0% 5% 10% 15% 20% 30% 40% 50%

M

C

A

R

MCMC 11.044 11.043 11.040 11.047 11.049 11.038 11.045 11.046 3.916 3.918 3.918 3.919 3.920 3.918 3.918 3.927

Reg 11.044 11.044 11.044 11.044 11.044 11.044 11.043 11.045 3.916 3.910 3.904 3.896 3.890 3.875 3.861 3.850

Mean 11.044 11.043 11.043 11.048 11.044 11.044 11.041 11.050 3.916 3.816 3.716 3.608 3.503 3.272 3.209 2.768

Cohen 11.044 11.043 11.043 11.048 11.048 11.044 11.041 11.050 3.916 4.017 4.129 4.246 4.379 4.675 5.050 5.539

A-Cohen6 11.044 11.043 11.044 11.045 11.045 11.043 11.042 11.047 3.916 3.888 3.865 3.843 3.832 3.823 3.858 3.963

M

A

R

MCMC 11.044 11.046 11.044 11.019 11.034 11.038 11.058 11.031 3.916 3.920 3.919 3.935 3.908 3.909 3.903 3.940

Reg 11.044 11.050 11.050 11.020 11.038 11.050 11.072 11.041 3.916 3.907 3.899 3.912 3.879 3.853 3.830 3.838

Mean 11.044 11.355 11.609 11.827 12.080 12.528 13.009 13.412 3.916 3.638 3.431 3.272 3.075 2.771 2.470 2.270

Cohen 11.044 11.355 11.609 11.827 12.080 12.528 13.009 13.412 3.916 3.829 3.812 3.850 3.844 3.960 4.119 4.543

A-Cohen1 11.044 11.087 11.084 11.042 11.049 10.980 10.926 10.631 3.916 3.820 3.776 3.769 3.703 3.644 3.552 3.591

N

M

A

R

MCMC 11.044 11.013 10.978 10.951 10.916 10.812 10.688 10.493 3.916 3.861 3.802 3.798 3.769 3.691 3.610 3.491

Reg 11.044 11.012 10.977 10.939 10.902 10.801 10.668 10.453 3.916 3.851 3.802 3.757 3.722 3.633 3.533 3.383

Mean 11.044 10.601 10.257 9.954 9.667 9.109 8.533 7.938 3.916 3.385 3.068 2.829 2.622 2.263 1.928 1.627

Cohen 11.044 10.601 10.257 9.954 9.667 9.109 8.533 7.938 3.916 3.563 3.409 3.328 3.279 3.234 3.215 3.256

A-Cohen1 11.044 10.850 10.708 10.597 10.415 10.062 9.614 8.982 3.916 3.555 3.379 3.265 3.192 3.091 3.027 3.084

<Table 11> Mean and SD of generated data

5% 10% 15% 20% 30% 40% 50%

MCAR

REG 0.051 0.104 0.155 0.207 0.309 0.416 0.522

MEAN 0.773 1.532 2.318 3.077 4.638 6.174 7.687

Cohen 2.387 4.843 7.448 10.101 15.985 22.777 31.064

A-Cohen6 0.374 0.748 1.134 1.517 2.344 3.247 4.298

MAR

REG 0.038 0.086 0.151 0.212 0.298 0.384 0.460

MEAN 2.201 3.889 5.246 6.959 9.865 13.104 15.800

Cohen 3.471 5.795 7.919 10.339 14.842 18.975 23.551

A-Cohen1 0.308 0.708 1.152 1.586 2.529 3.473 4.913

NMAR

REG 0.071 0.132 0.203 0.283 0.465 0.710 1.135

MEAN 4.076 6.543 8.527 10.360 13.965 17.936 22.353

Cohen 5.901 10.005 13.675 17.001 23.514 30.226 37.720

A-Cohen1 0.905 1.577 2.153 3.478 6.087 9.426 14.292

<Table 12> MSE of generated data

Under MCAR, regression and MCMC method and adjusted Cohen method offer

available values up to 50% missing. In MAR, MCMC and regression are fine up

to 50% missing Cohen is valid up to 30% missing and the adjusted Cohen is good

up to 15% missing. Under NMAR, only MCMC and regression methods offer

suitable values up to 20% missing.

Regression method has the best result while Cohen has the worst. Adjusted

Cohen method offers better results than outcome of the mean method.
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We can verify that the adjusted Cohen methods are effective to strengthen the

drawbacks of Cohen method.

5. Conclusions and Future Directions5. Conclusions and Future Directions5. Conclusions and Future Directions5. Conclusions and Future Directions

The best way to deal with missing data is to prevent it, however it happens

anyway. After missing data has occurred, it is possible to impute the missing data

with predicted or simulated values.

In this study, the adjusted Cohen methods have been suggested and simulation

has been done to compare the efficiency with existing imputation methods include

Cohen method.

The simulation was performed using real data and generated data with 7 types

of missing rate comparing mean, standard deviation of the variable after

imputation and MSE, under MCAR, MAR and NMAR assumptions.

The result showed multiple imputation using MCMC offered the best outcome,

especially because it had valid estimates under MAR and NMAR. However this

method took a long time to tabulate the results, since it creates numbers of

complete data set and analyze them. Among single imputation methods, regression

imputation showed the best results and gave reasonable values in some of NMAR

cases, but it needs a model and becomes difficult in multivariate data when more

than one variable has missing values. Mean imputation gave the worst effect to

impute missing values, it could be used to estimate means under only MCAR

assumption, but these are affected in other cases, besides the variance was

underestimated in all cases. The Cohen methods presented good estimator with

variances estimation in some cases of MAR and NMAR, but it tended to

overestimate variance under MCAR as two values that dropped from mean to

opposite sides were imputed. That reason brought about inflation of MSE. The

adjusted Cohen method produced valid mean and variance under MCAR and

lowered MSE compared with the Cohen method and mean imputation. Also it

provided fine values in mean estimation under some of MAR and NMAR, but the

variance estimation was not good under NMAR.

The following some suggestions are given through a simulation study.

1. Do not use mean imputation unless the data is MCAR and variance

estimation does not matter, namely, only means or totals are required.

2. The adjusted Cohen method6 for MCAR and the adjusted Cohen method1 for

MAR and NMAR are recommend.

In this study, we have done a simulation study with three kinds of data, but

more simulation is needed to compare the efficiency of the adjusted Cohen
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methods and the other methods. In addition, the adjusted Cohen method is not

valid in variance estimation under NMAR, so a study under NMAR is required.
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