• Title/Summary/Keyword: Mean Contact Force

Search Result 54, Processing Time 0.037 seconds

Effects of Forefoot Rocker Shoes with Metatarsal Bar on Lower Extremity Muscle Activity and Plantar Pressure Distribution (중족골 바 형태의 전족부 라커 신발이 하지 근 활성도 및 족저압력 분포에 미치는 영향)

  • Park, In-Sik;Jung, Ji-Yong;Jeon, Keun-Hwan;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of forefoot rocker shoes equipped with a metatarsal bar on lower extremity muscle activity and plantar pressure distribution. Ten healthy women in the age of twenties were participated in this study as the subjects. All subjects walked on a treadmill(Gait Trainer, BIODEX, USA) wearing normal shoes and metatarsal bar shoes, during which the plantar pressure distribution and muscle activity were measured. Using Pedar-X system(Novel Gmbh, Germany), the plantar pressure was measured for six regions of the foot: forefoot, midfoot, rearfoot, 1st metatarsal, 2-3th metatarsal, and 4-5th metatarsal, and for each sub-region, 4 features such as maximum force, contact area, peak pressure, and mean pressure were analyzed based on the plantar pressure. EMG(Electromyography) activity was measured by attaching surface electrodes to the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius medial head, and magnitude of muscle contraction was analyzed in IEMG(Integrated EMG) value. The results show that the maximum force, contact area, peak pressure, and mean pressure in the midfoot all increased while maximum force, peak pressure, contact area, mean pressure in the 1st metatarsal and 2-3th metatarsal all decreased when wearing functional shoes. Also, muscle activities in the four muscles were all decreased when wearing the functional shoes. This paper suggests that forfoot rocker shoes equipped with a metatarsal bar can help disperse the high pressure and absorb the shock to the foot as well as give positive influence on gait pattern and postural stability by reducing muscle fatigue during walking.

Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method (유한요소해석 기법을 이용한 고속철도용 판토그래프 집전성능 평가 및 민감도 분석)

  • Lee, Jin-Hee;Paik, Jin-Sung;Kim, Young-Guk;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1874-1880
    • /
    • 2011
  • In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

  • PDF

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

Lab-based Simulation of Carton Clamp Truck Handling - Frictional Characteristics between Corrugated Packages

  • Park, Jong Min;Choi, Sang Il;Kim, Jong Soon;Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • Carton clamps, one of forklift attachments, allow users to quickly handle shipping units such as unitized loads, large shipping cases, or crates without the requirement of pallets. As the use of palletless handling by clamp trucks increases, so does the need for simulation research on clamp truck handling. The frictional characteristics for various contact conditions of corrugated paperboards and their constituent boards were analyzed to obtain the data needed in the computer simulation for the handling of carton clamp truck. The overall mean of static-frictional coefficients between selected corrugated paperboards was 0.38 (±0.01), which was 1.3~1.6 times greater than 0.23~0.29 of the frictional coefficients between boards. The overall mean of static-frictional coefficients between the corrugated paperboards and the rubber contact pad was 0.82 (±0.02), which was about 1.1 to 2.8 times greater than 0.29~0.78 of the static-frictional coefficient between the linerboard and the rubber contact pad. The overall mean of kinetic-frictional coefficients between the corrugated paperboards was 0.35 (±0.01), and 0.76 (±0.02) between the corrugated paperboards and the rubber contact pad.

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

Occlusal Analysis of the Patients with Temporomandibular Disorders Using T-Scan II System (T-Scan II 시스템을 이용한 측두하악장애 환자의 교합 분석)

  • Yang, Dong-Hyo;Lee, Won-Seop;Kim, Mee-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • Correlation between occlusal contact pattern and TMD have been hypothesized and partially investigated but results are controversial and not conclusive. The purposes of this study were to compare right-to-left difference of occlusal contact pattern, through contact points, contact force and occlusal balance, in the patients with unilateral TMD and also to evaluate its change related with TMD treatment. 36 patients with unilateral TMD from Department of Oral Medicine in Dankook University Dental Hospital were selected in this study (M:F=7:29, mean age of $29.2{\pm}14.8$ years). A computerized T-Scan II system (Tekscan, INC., USA) was employed for occlusal analysis and the simultaneity and occlusal balance through the number of tooth contact and magnitude of contact force were determined before and after TMD treatment. The number of contact points and contact force was more on the unaffected side than the affected side before treatment (p=0.056 and p=0.060, respectively) while significant difference between both sides was not found after treatment. The number of contact points and contact force on the affected sides significantly increased after treatment (p=0.038 and p=0.052), but the unaffected sides exhibited no significant difference between before and after treatment. In addition, sides difference in relative contact force decreased from about 27% to about 12% after TMD treatment (p=0.001). According to the results of this study, it is likely that unilateral TMD impairs right-to-left occlusal balance and that conservative TMD treatment alleviates the imbalance, subsequently leading to more symmetrical occlusal condition with increased contact points and force.

The Analysis of Surface Characteristics of the Hydrophilic Chemicals Treated PET Fibers using Tensiometric Methods (Tensiometric법을 이용한 친수하 PET 섬유의 표면특성 분석)

  • Chung Hae Won;Obendorf S. Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.431-435
    • /
    • 1991
  • The dispersion and Poiar force components of the surface free energy of PET fibers untreated and treated with hydrophilic chemicals, such as nonionic-soil release polymer (SRP), anionic, nonionic and hydrophilic silicone, were determined using harmonic-mean and geometric-mean methods. Contact angles of water and methylene iodide on the fibers were determined from the adhesion tensions using tensiometric method. Fibers treated with hydrophilic chemicals have the increased polar force component and the decreased dispersion force component. The adhesion tensions of triolein for the hydrophilic treated fibers were smaller than that for untreated fiber.

  • PDF

Development of Numerical Analysis Model to Estimate the Contact Force between the Pantograph and Catenary of a High-speed Train (고속 철도 차량용 판토그래프와 가선계의 접촉력 예측을 위한 수치 해석 모델 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Paik, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-467
    • /
    • 2011
  • This study aims to create a numerical analysis model which can investigate the dynamic interaction between pantograph and overhead contact wire used for a high-speed railway vehicle, and validate the simulation results according to EN 50318 standard. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program. The mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the possibility of simulating the collecting characteristic of an actual pantograph system by using the developed model is discussed.

A Study on the Effects of Chewing Side Preference on the Pattern of Occlusal Contacts (저작습관에 따른 교합접촉의 변화양태에 관한 연구)

  • Sun-Oh Kwon;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • The purpose of his study was to investigate the variations of occlusal contact pattern according to chewing side preference. The author selected 59 dental students (mean age 23.6 years) who had no signs and symptoms of masticatory disorders and divided into two groups, that is, bilateral chewing side group and unilateral chewing side group, respectively. For recording, T-Scan System(Teksan Inc., USA) was used and the recorded occlusal contacts were examined as to the number of occlusal contacts, points distribution in dental arch, time sequence and force snapshot. The obtained results were as follow s: 1. Total number of occlusal contacts were more in unilateral chewing side group and there were significant difference in number between right and left side or between chewing and less-chewing side in all two groups. 2. All items related to time sequence showed no statistical significant difference between two groups in any case. 3. Unilateral chewing side group had more occlusal contact force than bilateral group, especially in chewing side. From the above finding, the author considered that there was occlusal unbalance in unilateral chewing side group. 4. Chewing side preference would possibly have more effects on the occurrence rate of anterior tooth contact that the rate of prolonged their contact but proved.

  • PDF

Relationship between Impact and Shear Forces, and Shock during Running (달리기 시 충격력과 충격 쇼크 변인들과의 관계)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.