• Title/Summary/Keyword: Maxwell Stress Method

Search Result 79, Processing Time 0.024 seconds

An Adaptive Finite Element Method for Magnetostatic Force Computations (정자력 계산을 위한 적응 유한 요소법)

  • 박용규;박일한;정형석;정현교;이기식;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.100-105
    • /
    • 1989
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor. Mesh refinements are performed automatically by interelement magnetic field intensity discontinuity errors and element force errors. In initial mesh, the computed forces for different integration paths give great differences, but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values in typical examples.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility (PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석)

  • Jang, Jeong-Hwan;Jang, Geon-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.

pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model (REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향)

  • Kim, Nam Jeong
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.135-140
    • /
    • 2013
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and self-diffusions of flow segments.

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

Electric potential redistribution due to time-dependent creep in thick-walled FGPM cylinder based on Mendelson method of successive approximation

  • Kheirkhah, S.;Loghman, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1167-1182
    • /
    • 2015
  • In this study, the stresses and electric potential redistributions of a cylinder made from functionally graded piezoelectric material (FGPM) are investigated. All the mechanical, thermal and piezoelectric properties are modeled as power-law distribution of volume fraction. Using the coupled electro-thermo-mechanical relations, strain-displacement relations, Maxwell and equilibrium equations are obtained including the time dependent creep strains. Creep strains are time, temperature and stress dependent, the closed form solution cannot be found for this constitutive differential equation. A semi-analytical method in conjunction with the Mendelson method of successive approximation is therefore proposed for this analysis. Similar to the radial stress histories, electric potentials increase with time, because the latter is induced by the former during creep deformation of the cylinder, justifying industrial application of such a material as efficient actuators and sensors.

enerator During the State of Torsional Interaction (비틀림 상오작용 상태에 있는 터어보 발전기의 전기적 특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.10-17
    • /
    • 1988
  • The torsional resonance of the generator shaft system has the possibility of inducing voltages across the stator winding because it is a carrier with the field excitation. And these torsional induced stator currents inducs the eddy current in the rotor. This paper describes the eddy current based on the double Fourier series method. The forces generating during the torsional interaction are computed using the Maxwell's magnetic stress tensor for each of the Fouriercomponennts. And then, these forces of the Fourier components are evaluated by the Parseval's theorem.

  • PDF

Design Optimization and Performance of High Voltage Composite Bushing

  • Jo, Han-Gu;Gang, Hyeong-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.234-234
    • /
    • 2009
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

Design Optimization and Performance of High Voltage Composite Bushing (초고압 컴포지트 부싱의 최적설계 및 성능에 관한 연구)

  • Cho, Han-Goo;Kim, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.35-35
    • /
    • 2010
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF