DOI QR코드

DOI QR Code

pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model

REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향

  • Received : 2012.07.26
  • Accepted : 2012.12.05
  • Published : 2013.03.25

Abstract

The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and self-diffusions of flow segments.

Poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기 중, 증류수, pH 3, 7, 11 용액에서 실행하였다. Ree-Eyring and Maxwell 모델로부터 얻은 완화스펙트럼 식에 실험적인 응력완화 곡선을 대입하여 poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 완화스펙트럼을 얻었다. 완화스펙트럼의 계산은 Laplace 변환법을 사용한 컴퓨터 프로그램을 이용하였다. 이들 시료의 완화스펙트럼은 유동단위의 분자량과 자체확산 분포와 밀접한 관계가 있음을 알 수 있었다.

Keywords

References

  1. H. H. Winter, J. Non-Newt. Fluid Mech., 68, 225 (1997). https://doi.org/10.1016/S0377-0257(96)01512-1
  2. A. E. Berzosa, J. L. G. Ribelles, S. Kripotou, and P. Pissis, Macromolecules, 37, 6472 (2004). https://doi.org/10.1021/ma049429r
  3. A. R. Davies and N. J. Goulding, J. Non-Newt. Fluid Mech., 189-190, 19 (2012). https://doi.org/10.1016/j.jnnfm.2012.09.002
  4. R. H. Blanc, Rheol. Acta, 27, 482 (1988). https://doi.org/10.1007/BF01329347
  5. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980.
  6. M. Baumgaertel and H. H. Winter, Rheol. Acta, 28, 511 (1989). https://doi.org/10.1007/BF01332922
  7. M. Baumgaertel, A. Schausberger, and H. H. Winter, Rheol. Acta, 29, 400 (1990). https://doi.org/10.1007/BF01376790
  8. M. Baumgaertel and H. H. Winter, J. Non-Newt. Fluid Mech., 44, 15 (1992). https://doi.org/10.1016/0377-0257(92)80043-W
  9. R. Fulchiron, V. Verney, P. Cassagnau, and A. Michel, J. Rheol., 37, 17 (1993). https://doi.org/10.1122/1.550461
  10. V. M. Kamath and M. R. Mackley, J. Non-Newt. Fluid Mech., 32, 119 (1989). https://doi.org/10.1016/0377-0257(89)85032-3
  11. C. Friedrich, W. Waizenegger, and H. H. Winter, Rheol. Acta, 47, 909 (2008). https://doi.org/10.1007/s00397-008-0280-5
  12. C. Elster, J. Honercamp, and J. Weese, Rheol. Acta, 31, 161 (1992). https://doi.org/10.1007/BF00373238
  13. J. Honercamp and J. Weese, Rheol. Acta, 32, 65 (1993). https://doi.org/10.1007/BF00396678
  14. J. Honerkamp and J. Weese, Macromolecules, 22, 4372 (1989). https://doi.org/10.1021/ma00201a036
  15. E. A. Jensen, J. Non-Newt. Fluid Mech., 107, 1 (2002). https://doi.org/10.1016/S0377-0257(02)00110-6
  16. S. Hansen, Rheol. Acta, 47, 169 (2008). https://doi.org/10.1007/s00397-007-0225-4
  17. N. Orbey and M. D. Dealy, J. Rheol., 35, 1035 (1991). https://doi.org/10.1122/1.550164
  18. E. B. Chakraa, J. C. Barrioza, D. Mazuyera, F. Jarniasb, and A. Bouffetb, Tribology International, 43, 1674 (2010). https://doi.org/10.1016/j.triboint.2010.03.016
  19. J. J. M. Baltussen and M. G. Northoltb, Polymer, 45, 1717 (2004). https://doi.org/10.1016/j.polymer.2003.11.033
  20. N. J. Kim, E. R. Kim, and S. J. Hahn, Bull. Korean Chem. Soc., 13, 413 (1992).
  21. N. J. Kim, Polymer(Korea), 35, 232 (2011).
  22. C. Friedrich, R. J. Loy, and R. S. Anderssen, Rheol. Acta, 48, 151 (2009). https://doi.org/10.1007/s00397-008-0314-z
  23. M. R. Nobile and F. Cocchini, Rheol. Acta, 47, 509 (2008). https://doi.org/10.1007/s00397-007-0228-1
  24. N. Clarke, F. R. Colley, S. A. Collins, L. R. Hutchings, and R. L. Thompson, Macromolecules, 39, 1290 (2006). https://doi.org/10.1021/ma051973s