Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.2.135

pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model  

Kim, Nam Jeong (Department of Chemistry, Sahmyook University)
Publication Information
Polymer(Korea) / v.37, no.2, 2013 , pp. 135-140 More about this Journal
Abstract
The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and self-diffusions of flow segments.
Keywords
poly(methyl acrylate)-poly(acrylonitrile) copolymers; relaxation spectra; REM model; tensile tester; distribution of molecular weights; self-diffusions;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980.
2 M. Baumgaertel and H. H. Winter, Rheol. Acta, 28, 511 (1989).   DOI   ScienceOn
3 N. Clarke, F. R. Colley, S. A. Collins, L. R. Hutchings, and R. L. Thompson, Macromolecules, 39, 1290 (2006).   DOI   ScienceOn
4 H. H. Winter, J. Non-Newt. Fluid Mech., 68, 225 (1997).   DOI   ScienceOn
5 A. E. Berzosa, J. L. G. Ribelles, S. Kripotou, and P. Pissis, Macromolecules, 37, 6472 (2004).   DOI   ScienceOn
6 A. R. Davies and N. J. Goulding, J. Non-Newt. Fluid Mech., 189-190, 19 (2012).   DOI   ScienceOn
7 R. H. Blanc, Rheol. Acta, 27, 482 (1988).   DOI   ScienceOn
8 R. Fulchiron, V. Verney, P. Cassagnau, and A. Michel, J. Rheol., 37, 17 (1993).   DOI
9 M. Baumgaertel, A. Schausberger, and H. H. Winter, Rheol. Acta, 29, 400 (1990).   DOI   ScienceOn
10 M. Baumgaertel and H. H. Winter, J. Non-Newt. Fluid Mech., 44, 15 (1992).   DOI   ScienceOn
11 V. M. Kamath and M. R. Mackley, J. Non-Newt. Fluid Mech., 32, 119 (1989).   DOI   ScienceOn
12 C. Friedrich, W. Waizenegger, and H. H. Winter, Rheol. Acta, 47, 909 (2008).   DOI
13 C. Elster, J. Honercamp, and J. Weese, Rheol. Acta, 31, 161 (1992).   DOI   ScienceOn
14 J. Honercamp and J. Weese, Rheol. Acta, 32, 65 (1993).   DOI   ScienceOn
15 J. Honerkamp and J. Weese, Macromolecules, 22, 4372 (1989).   DOI
16 E. A. Jensen, J. Non-Newt. Fluid Mech., 107, 1 (2002).   DOI   ScienceOn
17 S. Hansen, Rheol. Acta, 47, 169 (2008).   DOI
18 N. Orbey and M. D. Dealy, J. Rheol., 35, 1035 (1991).   DOI
19 E. B. Chakraa, J. C. Barrioza, D. Mazuyera, F. Jarniasb, and A. Bouffetb, Tribology International, 43, 1674 (2010).   DOI   ScienceOn
20 J. J. M. Baltussen and M. G. Northoltb, Polymer, 45, 1717 (2004).   DOI   ScienceOn
21 N. J. Kim, E. R. Kim, and S. J. Hahn, Bull. Korean Chem. Soc., 13, 413 (1992).
22 N. J. Kim, Polymer(Korea), 35, 232 (2011).
23 C. Friedrich, R. J. Loy, and R. S. Anderssen, Rheol. Acta, 48, 151 (2009).   DOI
24 M. R. Nobile and F. Cocchini, Rheol. Acta, 47, 509 (2008).   DOI