• 제목/요약/키워드: Maximum power point tracking

검색결과 489건 처리시간 0.031초

Photovoltaic Modified β-Parameter-based MPPT Method with Fast Tracking

  • Li, Xingshuo;Wen, Huiqing;Jiang, Lin;Lim, Eng Gee;Du, Yang;Zhao, Chenhao
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Maximum power point tracking (MPPT) is necessary for photovoltaic (PV) power system application to extract the maximum possible power under changing irradiation and temperature conditions. The β-parameter-based method has many advantages over conventional MPPT methods; such advantages include fast tracking speed in the transient stage, small oscillations in the steady state, and moderate implementation complexity. However, a problem in the implementation of the conventional beta method is the choice of an appropriate scaling factor N, which greatly affects both the steady-state and transient performance. Therefore, this paper proposes a modified β-parameter-based method, and the determination of the N is discussed in detail. The study shows that the choice of the scaling factor N is determined by the changes of the value of β during changes in irradiation or temperature. The proposed method can respond accurately and quickly during changes in irradiation or temperature. To verify the proposed method, a photovoltaic power system with MPPT function was built in Matlab/Simulink, and an experimental prototype was constructed with a solar array emulator and dSPACE. Simulation and experimental results are illustrated to show the advantages of the improved β-parameter-based method with the optimized scaling factor.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

Flyback Inverter Using Voltage Sensorless MPPT for Photovoltaic AC Modules

  • Ryu, Dong-Kyun;Choi, Bong-Yeon;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1293-1302
    • /
    • 2014
  • A flyback inverter using voltage sensorless maximum power point tracking (MPPT) for photovoltaic (PV) AC modules is presented. PV AC modules for a power rating from 150 W to 300 W are generally required for their small size and low price because of the installation on the back side of PV modules. In the conventional MPPT technique for PV AC modules, sensors for detecting PV voltage and PV current are required to calculate the PV output power. However, system size and cost increase when the voltage sensor and current sensor are used because of the addition of the auxiliary circuit for the sensors. The proposed method uses only the current sensor to track the MPP point. Therefore, the proposed control method overcomes drawbacks of the conventional control method. Theoretical analysis, simulation, and experiment are performed to verify the proposed control method.

태양전지 배열기의 최대 전력 추적 알고리즘 개발

  • 박희성;장성수;장진백;박성우;이종인
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.77-85
    • /
    • 2005
  • 최대 전력 추적 기법은 온도와 일사량의 조건 및 부하의 전기적 특성 변화에 관계없이 태양전지 배열기의 출력 전력을 최대화하기 위한 광발전 시스템에 사용된다. 본 논문에서는 저궤도 위성을 위한 최대 전력 추적 기법을 제안한다. 본 논문에서 제안한 최대 전력추적 기법은 전력의 계산이 불필요하여 간단한 아날로그 회로만을 이용한 하드웨어 구현이 가능하다. 본 연구에서는 태양전지의 특성을 변화 시킬 수 있는 여러 조건을 가정하여 시뮬레이션과 실험을 통해 제안한 최대 전력 기법의 타당성을 입증하였다.

  • PDF

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • 통합자연과학논문집
    • /
    • 제15권3호
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

A Maximum Power Control of IPMSM with Real-time Parameter Identification

  • Jun, Hyunwoo;Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.110-116
    • /
    • 2017
  • This paper proposed a new real-time parameter tracking algorithm. Unlike the convenience algorithms, the proposed real-time parameter tracking algorithm can estimate parameters through three-phase voltage and electric current without coordination transformation, and does not need information on magnetic flux. Therefore, it can estimate parameters regardless of the change according to operation point and cross-saturation effect. In addition, as the quasi-real-time parameter tracking technique can estimate parameters through the four fundamental arithmetic operations instead of complicated algorithms such as numerical value analysis technique and observer design, it can be applied to low-performance DSP. In this paper, a new real-time parameter tracking algorithm is derived from three phase equation. The validity and usefulness of the proposed inductance estimation technique is verified by simulation and experimental results.

ZVCS 컨버터를 이용한 태양전지 최대전력 검출법 (Maximum power tracking Strategy of a Solar Cell using ZVCS converter)

  • 곽동걸;전현규;김종민;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1032-1034
    • /
    • 2001
  • As well known, a solar cell has an optimal operating point to be able to get the maximum power $P_{max}$. So, many $P_{max}$ tracking controllers using the line voltage of a solar cell have been popularly used. But it may vary depending on the miss match between the solar cell output and the load. In this paper, we investigate the possibilities of $P_{max}$ control using the current tracking controller and the output voltage and the output current instead of the solar cell output power. And we also examine about the optimal power converter using ZVCS step up and down chopper circuit to operate the solar cell at an optimal voltage using these variables. And then, we show some experimental results to confirm the successful operation.

  • PDF

AWS형 파력발전 시스템의 최대전력추종 알고리즘 개발 (Development of Maximum Power Point Tracking Algorithm for AWS-type Power System)

  • 성화창;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1836-1837
    • /
    • 2011
  • 본 논문에서는 AWS형 파력발전 시스템의 최대전력 추종(Maximum Power Point Tracking: MPPT)을 위한 알고리즘 개발 기법에 대한 제안을 하고자 한다. AWS형 파력발전 시스템은 2004년 포르투갈에서 제안된 파도에너지 변환장치로, 해저에 위치하여 전력을 생산하는 특징을 지니고 있다. 파도의 상하 운동에 맞추어 AWS의 주요 부위인 본체가 움직이기 때문에 전력 생산량이 일정치 못하며, 특히 계절 및 환경에 따른 영향을 많이 받게 된다. 이러한 문제점을 해결하기 위한 방법으로, 신재생 발전에서 많이 활용되는 MPPT 제어 기법을 제안하게 된다. 제안된 기법의 활용을 통해 AWS형 파력발전 시스템의 전력 생산성 향상 및 전력 안정도에 대한 연구를 수행하게 된다.

  • PDF

최대전력점 추종을 통한 계통연계형 3kW 태양광 PCS연구 (A Study on Grid-Connected 3kW PV PCS with Maximum Power Point Tracking)

  • 강병관;김승탁;박정욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.511_512
    • /
    • 2009
  • 본 논문에서는 IncCond(Incremental conductance) MPPT(Maximum Power Point Tracking) 알고리즘에 일사량을 변수로 하여 가변적인 step 사이즈를 적용함으로써 급격한 외부환경변화에 빠르게 동작하는 개선된 성능의 MPPT 제어기법을 제시하였고, 계통연계형 3kW 태양광 PCS(Power Conditioning System)의 기본적인 제어기를 설계함에 있어 제안한 MPPT 알고리즘과 연계해 빠른 동작특성을 갖는 DC/DC 부스트 컨버터의 제어기와 DC link 전압 제어기 및 인버터 제어기를 설계하였다. 이를 PSCAD/EMTDC 시뮬레이션 프로그램으로 구현하여 제안한 제어기의 성능을 확인하였다.

  • PDF

MPPT 제어기법에 따른 PV 시스템의 특성 비교 (Comparative characteristics of the PV system according to the MPPT control Method)

  • 서태영;고재섭;강성민;김유탁;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.956-957
    • /
    • 2015
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

  • PDF