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Abstract

Renewable energy is promoted massively to overcome problems that fossil fuel

power plants generate. One popular renewable energy type that offers easy

installation is a photovoltaic (PV) system. However, the energy harvested

through a PV system is not optimal because influenced by exposure to solar

irradiance in the PV module, which is constantly changing caused by weather.

The maximum power point tracking (MPPT) technique was developed to max-

imize the energy potential harvested from the PV system. This paper presents

the MPPT technique, which is operated on a new high-gain voltage DC/DC

converter that has never been tested before for the MPPT technique in PV sys-

tems. Fuzzy logic (FL) was used to operate the MPPT technique on the con-

verter. Conventional and adaptive perturb and observe (P&O) techniques

based on variables step size were also used to operate the MPPT. The perfor-

mance generated by the FL algorithm outperformed conventional and variable

step-size P&O. It is evident that the oscillation caused by the FL algorithm is

more petite than variables step-size and conventional P&O. Furthermore, FL’s
tracking speed algorithm for tracking MPP is twice as fast as conventional

P&O.
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1 | INTRODUCTION

The need for electrical energy for homes and industries
has significantly increased in the last few decades. Many
power plants have been built to meet the demand for
electrical energy. However, in addition to their dwindling
resources, these power plants have several adverse side
effects on the environment, such as water, soil, and air
pollution caused by solid and liquid waste produced from
burning fossil materials as raw materials [1, 2]. However,

due to the shared awareness in various circles, radical
efforts have been made to overcome these problems and
provide a healthier environment.

Renewable energy is one of the significant issues pre-
dicted to be the best alternative to fulfill the demand for
electrical energy but without harming the environment.
Renewable energy sources such as solar photovoltaic
(PV) systems, hydropower, wind turbine, tidal turbine,
biomass, and biothermal [3, 4] are being developed
because of their ability to optimize the potential of
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nature. Solar PV systems are one of the most popular
because they are clean, do not cause noise, are cheap,
and easy to install and maintain [5, 6]. Furthermore, the
advantage of solar PV systems as an alternative power
plant is that they do not generate noise compared to wind
turbines [7].

However, due to the direct relationship and depen-
dence on nature, solar PV-based power generation is
nonlinear. As when the irradiation on the PV array
changes drastically, at that time, an instantaneous shift
in the peak power point occurs [8]. The nonlinear nature
resulting from changes in irradiation and temperature
affecting the PV causes the efficiency of the PV itself to
be lower [9, 10]. PV energy loss has reached up to 25%
[11]. This energy loss is one of the problems in optimiz-
ing energy harvesters with solar PV. Various efforts have
been made to optimize energy harvesting from solar
PV. One of the most effective ways to increase efficiency
is to achieve solar PV power production under any condi-
tions [12]. This technique is known as maximum power
point tracking (MPPT), which works by feeding an appro-
priate duty cycle to DC/DC converter in the PV system.

Various methods can be used to operate MPPT, rang-
ing from conventional methods such as perturb and
observe (P&O) [13–15], incremental conductance
(IncCond) [16–18], hill climbing (HC) [19–21], and their
improved methods such as learning-based P&O (LPO)
[22], self-tuned P&O (SPO) [23], learning-based ncCond
(LIC) [24, 25], learning-based HC (L-HC) [26], which is
based on the perturbation process in HC, to methods
based on artificial intelligence algorithms such as fuzzy
logic (FL) [27–31], artificial neural network (ANN)
[32, 33], and adaptive neuro-fuzzy inference systems
(ANFIS) [34–36]. Generally, a suitable MPPT implemen-
tation considers several aspects such as the type of appli-
cation, efficiency, cost, lost energy, and suitability of the
converter [37, 38].

There are various types of DC/DC converters devel-
oped for various applications, namely, boost, buck, and
buck–boost converters. For applications that require

high-voltage conversion, a DC/DC converter that can
compensate for these needs is required. The boost con-
verter can achieve high voltages by providing a large
D. However, the voltage increment multiplication is not
more than five and at the expense of efficiency, increas-
ing the voltage on the switch and causing electromag-
netic inference [39–41]. A coupled-inductor converter
can provide high-voltage gain. Nevertheless, the effi-
ciency is low due to increased chopper losses in inductors
and conduction losses in semiconductors [42]. Another
converter topology that provides high-gain voltage is
the cascaded converter [43, 44]. However, the efficiency
is also low due to the need for two processes. Another
alternative is connecting two converters in series with
only one switch, which is often called a quadratic
boost converter (QBC) [45–47]. This converter topology
produces the same voltage ratio as the cascaded con-
verter, but the efficiency is lower than the boost
converter.

The new high-gain voltage DC/DC converter [48] pro-
vides a high-voltage ratio and efficiency with lower cur-
rent and voltage ripples. However, this converter still
needs to be tested with MPPT to determine its suitability
for PV systems. Therefore, this paper employs the FL
algorithm in a high-gain voltage DC/DC converter for
standalone PV systems.

2 | MODELING OF SOLAR CELLS

A basic understanding of solar cells is essential as a fun-
damental element of a PV system. Solar arrays com-
monly used consist of a combination of series and/or
parallel PV cells to produce a specific value. Different
circuit models of PV cells are presented by Jordehi [49].
As in Figure 1, the single diode is the most common and
most straightforward model, whereas the PV module
characteristic curves are shown in Figure 2. The rela-
tionship between the voltage–current of the PV module
is modeled as

F I GURE 1 Single-diode PV model
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I¼ IPH� Isat� exp q�VPVþ IPV�RS

A�K�T

� �
�1

� �

�VPVþ IPV�RS

RSH
, ð1Þ

where IPH and Isat are light-generated and reverse satura-
tion current, respectively, q is the electron charge
(1.66022 � 10�19 C), VPV and IPV are the output voltage
and current of the solar cells, respectively, RS and RSH are
shunt and series resistances, respectively, A is the p-n
ideal factor, K is the Boltzmann’s constant
(1.38� 10�23 J/K), and T is the cell temperature in
Kelvin.

The IPH value is strongly influenced by the ambient
temperature, T, as well as the irradiance, G, which is
expressed as

IPH ¼ I�SCþki T�T�ð Þ� � G
G� , ð2Þ

where I�SC is the short-circuit current at 25�C, T� = 298�K
and G= 1000W/m2. Although ki is the short-circuit cur-
rent temperature coefficient. The * sign is the value at
standard test conditions.

Isat is affected by ambient temperature as

Isat ¼ I�SCþki T�T�ð Þ
exp V �

OCþkV T�T�ð Þ
V t

h i
�1

, ð3Þ

where V�
OC is the open-circuit voltage at 25�C with kV as

the coefficient of open-circuit voltage, whereas V t ¼
K�T=q is the thermal voltage.

The amount of current in the series-connected mod-
ule per setting is N ser, and the parallel connection is Npar,
then

I¼NparIPH�NparIsat exp q
V

N ser
þ I RS

Npar

AKT

( )
�1

" #

�
Npar

Nser

� 	
þ IRS

RSH
: ð4Þ

3 | MPPT

The maximum power transfer theorem forms the basis
for the working principle of the MPPT technique. The
theorem states that when the load resistance matches the
source, it can transfer the maximum power. Therefore,
the working principle of the MPPT technique is to ensure
the load resistance with PV at the maximum power point
(MPP), which is calculated by Green [50].

Rmpp ¼Vmpp

Impp
, ð5Þ

where Rmpp, Vmpp, and Impp are the resistance, voltage,
and current in MPP, respectively.

Although the maximum power transfer can be carried
out by considering Rmpp, in reality, Rmpp is not constant
because of the I�V curve of PV due to weather depen-
dence where changes in irradiation and temperature are
unavoidable. Therefore, a DC/DC converter between the
source and voltage connections is required to compensate
for this resistance mismatch instead of supplying power
directly to the load [51]. Through the MPPT algorithm,
the duty cycle, D, is adjusted to ensure load resistance,
and the D, which has been modified according to Rmpp

on PV under varying weather conditions.

4 | HIGH-GAIN VOLTAGE DC/DC
CONVERTER

The DC/DC converter plays a vital role in the source and
load interface of PV systems. This paper uses a high-gain

F I GURE 2 Trina Solar TSM-250PA05.08 PV module

characteristic curves (A) under irradiation variation and (B) under

temperature variation
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voltage DC/DC converter, shown in Figure 3, based on a
modified DC/DC buck–boost converter. This converter is
capable of producing a high-voltage ratio obtained from

V o

Ed
¼ 1
1�α

, ð6Þ

where α is the duty factor of the transistor Q.
The RMS value of the voltage ripple is given by

Bahrami and others (7), whereas the output voltage
ripple when the duty cycle is more than half is given by
Baba and others (8).

eV o ¼ io
Cf s

α 1�2αð Þ
2

ffiffiffi
3

p
1�αð Þ , ð7Þ

eVo ¼ io
Cf s

2α�1ð Þ
2

ffiffiffi
3

p , ð8Þ

where f s is the minimum switching of the converter.

5 | MPPT CONTROL ALGORITHMS

There are many variations of the MPPT control algo-
rithm. However, one of the most frequently applied
MPPT control algorithms because of its convenience is
P&O. In this paper, conventional and advanced P&O
algorithms based on step-size variables will be compared
with one of the artificial intelligence algorithms,
namely, FL.

5.1 | P&O

The P&O algorithm is in great demand in the MPPT tech-
nique because it does not require special information
related to PV characteristics, so it can be applied to all

types of PV modules [52]. Figure 4 shows a flowchart for
the conventional P&O method.

The working principle is to direct the working point
on the MPP by perturbation. If the PV operating point is
to the left of the MPP, the perturbation is done to the right,
and vice versa. However, this algorithm is affected by the
given step size. The wide step size can speed up MPP
tracking, but the oscillations around the MPP are also
large. On the other hand, a small step size reduces oscilla-
tions around the MPP but slows down the tracking speed.

Adaptive P&O based on step-size variables was devel-
oped to reduce oscillations around the MPP caused by
conventional P&O algorithms [53]. The flowchart of the
algorithm is shown in Figure 5. In this algorithm, factor
Að Þ is used as a constant whose value is greater than
1. The duty cycle as the control output of the algorithm
increases with the multiplication factor Að Þ when dP>0.
Meanwhile, when the condition dP<0, then the duty
cycle is divided by Að Þ.

5.2 | FL

The FL algorithm offers advantages in the form of ease
of implementation, no requirement for mathematical

F I GURE 3 Schematic of a converter with a high-voltage ratio

F I GURE 4 Flowchart of conventional P&O algorithm
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modeling of data and robustness in the field of control
systems [27, 54–56]. In a PV system, the input FL is the
Error (E) resulting from the change in the PV output
power divided by the change in the output voltage and
the Change of Error (ΔE). Although the output is the
duty cycle which will regulate the PWM converter signal.
Both inputs are given by.

Error, E kð Þ¼ ΔP
ΔV

¼ P kð Þ�P k�1ð Þ
V kð Þ�V k�1ð Þ , ð9Þ

Error Change, ΔE kð Þ¼E kð Þ�E k�1ð Þ, ð10Þ

where k is sample time, P kð Þ and V kð Þ are PV power and
voltage, P k�1ð Þ and V k�1ð Þ are previous PV power and
voltage.

In the fuzzification stage, a triangular subset with five
membership functions is used. Additionally, symmetrical
membership functions are used for input and output.
Each of these membership functions is negative big (NB),
negative small (NS), zero (Z), positive small (PS), and
positive big (PB). The knowledge based on the Mamdani-
type inference system process is shown in Table 1,
whereas the results of the rule base are depicted by the
surface Figure 6. Thus, in the defuzzification process, the
center of gravity method is used.

6 | RESULTS AND DISCUSSION

In this paper, the Trina Solar TSM-250PA05.08 PV mod-
ule with the parameters as described in Table 2 is used.
The characteristics of the PV output that are affected by
irradiance and ambient temperature are shown in
Figure 2. The proposed system is constructed in
MATLAB/Simulink for a standalone application with a
resistive load, which is comprehensively shown in
Figure 7.

F I GURE 5 Flowchart of P&O variable step-size algorithm

TAB L E 1 Knowledge base

E/ΔE Negative big (NB) Negative small (NS) Zero (Z) Positive small (PS) Positive big (PB)

Negative big (NB) NB NB Z PB PB

Negative small (NS) NS NS Z PS PS

Zero (Z) Z Z Z Z Z

Positive small (PS) PS PS Z NS NS

Positive big (Pb) PB PB Z NB NB

F I GURE 6 Surface inference system stage
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System testing is done by varying the irradiance into
six steps. The irradiance variations given in the sequence
of steps 1–6 are 1000, 700, 800, 600, 400, and 200 W/m2.
This test was conducted to determine the agility of the
MPPT algorithm employed in high-gain voltage con-
verters with varying weather conditions. Figure 8 shows
the results of testing the FL algorithm on the MPPT tech-
nique when handling variations of simulated weather
conditions by varying the irradiance. The FL algorithm
was compared with conventional P&O and variable step-
size P&O as described.

As shown in Figure 8, conventional P&O and variable
step-size P&O experience an overshoot of the curve. This
phenomenon is known as drift, which is caused by a mis-
judgment of the MPPT algorithm so that the operating
point will deviate from the true MPP [57, 58]. Drift is
common in algorithms with operations based on hill
climbing, such as P&O, which experience sudden
changes in irradiation. In this test, drift also occurs in the
step-size P&O variable, but it is not as severe as in con-
ventional P&O.

It is different from the FL algorithm, which does not
experience the drift phenomenon at all. The FL algorithm
is able to operate the MPPT technique on a high-gain
voltage converter properly. Besides not experiencing drift,
the FL algorithm is also able to track MPP quickly. This
is proven by the tracking speed, which is better than the
P&O algorithm. It can be seen in Figure 9 that the curve
generated by the FL algorithm is more stable than P&O,
especially without the step-size variable. When the sys-
tem is first subjected to high irradiation treatment
(Figure 9A), both conventional P&O and variable step-
size P&O oscillate around the MPP until they are finally
able to track the true MPP. The process to the actual
MPP after this oscillation takes time, causing losses in
the system. Likewise, when given low irradiation treat-
ment, the two P&O algorithms drifted, causing the

TAB L E 2 Trina Solar TSM-250PA05.08 PV module

characteristics

Parameters Value

Maximum power, PMPP 249.86 (W)

Cells per module, Ncell 60 cells

Open-circuit voltage, VOC 37.6 (V)

Short-circuit current, ISC 8.55 (A)

Voltage at maximum power point, VMP 31 (V)

Current at maximum power point, IMP 8.06 (A)

Temperature coefficient of VOC �0.35%/�C

Temperature coefficient of ISC 0.06%/�C

F I GURE 7 The proposed system

simulated with MATLAB/Simulink

F I GURE 8 Pout generated by given

the variation of irradiance
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F I GURE 9 Details of drift and initial oscillation of Pout (A) when the irradiation level increases and (B) when the irradiation level

decreases

F I GURE 1 0 Comparison of Pout

PV against (A) conventional P&O,

(B) variable step-size P&O, and (C) FL
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system to be unresponsive. These two disadvantages do
not occur in the FL algorithm.

Furthermore, several parameters affecting the perfor-
mance of the MPPT system were carefully examined from
the three algorithms. These parameters are tracking speed,
oscillation, and efficiency. Overall, the FL algorithm can
track MPP faster, namely, 0.25 s, followed by the step-size
P&O variable with a tracking time of 0.41 s. At the same
time, conventional P&O can only track MPP after 0.52 s.
The oscillations around MPP caused by the FL algorithm
are also quite small (0.01 V), whereas the step-size and con-
ventional P&O variables are 0.86 and 1.22 V, respectively.

However, the efficiency generated by the three
algorithms has the same level of 93.66%. Figure 10 shows
the comparison of Pout PV against the three MPPT
algorithms. Seen in Figure 10A, the P&O algorithm reacts
to an extreme when there is a change in irradiation. The
P&O algorithm causes an instantaneous drift when the
irradiation changes and takes longer to return to a stable
state. Different results are shown in the FL algorithm and
the step-size P&O variable, where there is no extreme
reaction when irradiation changes. Both tend to produce
a smoother slope. Also, when viewed in more detail, as
shown in Figure 9A, the step-size P&O algorithm tends
to have oscillations even though they only look small.

The FL algorithm can track MPP quickly because it
does not go through a subtraction and addition process as
the P&O algorithm does. Although the variable step-size
P&O can provide large step perturbations away from
MPP, it still needs to track MPP as fast as the FL algo-
rithm. Furthermore, the oscillations caused by P&O are
more significant. The perturbation step length causes large
oscillations around the MPP. In the conventional P&O
algorithm that uses a fixed step size, the magnitude of the
oscillation is the same as the step size used. This paradigm
of problems occurs in conventional P&O algorithms,
where a wide step size can shorten the MPPT tracking
process, but the oscillations around the MPP become
large. On the other hand, a small step size will minimize
oscillations, but it will take longer to reach MPP.

In terms of efficiency, the three algorithms do not
affect the power harvesting efficiency of the high-gain
DC/DC converter used. All three algorithms can actually
be applied to the new converter topology. However, the
FL algorithm is able to outperform conventional and var-
iable step-size P&O algorithms in terms of tracking speed
and oscillation damping.

7 | CONCLUSION

MPPT control with a new topology converter that has
never been tested on MPPT PV system techniques has

been completed. MPPT is operated using the FL
algorithm as one of the various types of intelligent
algorithms. MPPT performance with this FL algorithm is
compared with the P&O algorithm as the most com-
monly used algorithm and adaptive P&O, which is based
on step-size variables as the development of the P&O
algorithm. The test is performed by varying the irradi-
ance to represent weather changes around the PV mod-
ule. The results indicate that the FL algorithm can
outperform conventional P&O algorithms and step-size
variables. This is evidenced by the faster tracking speed
and smaller oscillations generated by the FL algorithm.
The P&O algorithm reacts to extremes when there is a
change in irradiation, which causes a momentary devia-
tion when the irradiation changes and takes longer to
return to a stable state. However, the FL algorithm shows
no extreme reaction when the irradiation changes. There-
fore, the MPPT technique becomes more convergent, and
the MPP is ensured to be tracked correctly by the FL
algorithm. This advantage makes solar energy harvesting
through the PV system with the MPPT technique, which
is operated by the FL algorithm, more optimum.
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