• Title/Summary/Keyword: Maximum efficiency

Search Result 4,316, Processing Time 0.041 seconds

Design of DC OPTIMIZER for Maximum Power Generation System of Solar Panel (태양광 패널의 최대 전력 발생 시스템을 위한 DC OPTIMIZER 설계)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • In this paper, the efficiency of the solar system is lowered due to the partial shading such as the environmental factors of the solar panel. In order to solve this problem, a DC OPTIMIZER is proposed for a maximum power generation system of a photovoltaic panel. The proposed DC OPTIMIZER is composed of a buck structure that performs the maximum power point tracking (MPPT) control of each module of the solar panel, thus maximizing the efficiency. In order to verify the proposed DC Optimizer, the efficiency was measured by varying the irradiance using a solar simulator instead of the solar panel. As a result, it showed high efficiency characteristics as the maximum energy conversion efficiency was 99.3% at $800w/m^2$, $900w/m^2$, and the average efficiency was 99.06% excluding $100w/m^2$. The maximum efficiency of MPPT was 99.97% at $200w/m^2$, efficiency showed excellent performance.

Emission Characteristics of Multi-Tandem OLED using MoOx with CGL (CGL 층으로 MoOx를 사용한 다중 적층구조 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.105-109
    • /
    • 2015
  • We studied emission characteristics of blue fluorescent multi-tandem OLEDs using $Al/MoO_x$ as charge generation layer(CGL). Threshold voltage for 2, 3, 4, and 5 units tandem OLEDs was 8, 11, 14 and 18 V, respectively. The threshold voltage in multi-tandem OLEDs was lower than multiple of 4 V for the single OLED. Maximum current efficiency and maximum quantum efficiency of single OLED were 7.6 cd/A and 5.5%. Maximum current efficiency for 2, 3, 4, and 5 units tandem OLEDs was 22.6, 31.4, 41.2, and 46.6 cd/A, respectively. Maximum quantum efficiency for 2, 3, 4, and 5 units tandem OLEDs was 11.8, 15.8, 21.8, and 25.6%, respectively. The maximum current efficiency and maximum quantum efficiency in multi-tandem OLEDs were higher than multiple of those for the single OLED. The intensity for 508 nm peak was changed and the peak wavelength was red shift by increase of tandem unit in electroluminescent emission spectra. These phenomena can be caused by micro-cavity effect with increasing of organic layer thickness.

Maximum-Efficiency Tracking Scheme for Piezoelectric-Transformer Inverter with Dimming Control

  • Nakashima Satoshi;Ogasawara Hiroshi;Kakehashi Hidenori;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.7-10
    • /
    • 2001
  • This paper provides a solution for the problem of efficiency decrease caused by load variation. A novel control scheme of tracking the PT's operation frequency for the maximum efficiency is proposed. As a result, a high efficiency over $80\%$ has been achieved even under the output-current decrease down to $10\%$ of the full load current.

  • PDF

Maximum Efficiency Point Tracking Control Algorithm for Improving Electric Power Transmission Efficiency between Photovoltaic Power Generating system and the Grid (태양광발전시스템과 계통간의 전력 전송 효율 개선을 위한 최대효율점 추적 제어 알고리즘)

  • Kwon, Cheol-Soon;Kim, Kwang Soo;Do, Tae Young;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • It proposes an efficient control algorithm to increase electric power transmission efficiency between photovoltaic power generating system and the grid. The main controller finds a maximum efficiency condition by considering the quantity of power generated from PV arrays, the number of inverters, and efficiency of PV inverter. According to the condition, a relay board arranges a point of contract of PV arrays. By the disposition of PV arrays, it assigns the optimized power on each PV inverter. Operational principle of the proposed maximum efficiency point tracking algorithm is given in detail. To verify the validity of the proposed approach, computer-aided simulation and experiment carried out.

Fast Maximum Efficiency Control of Vector-Controlled Induction Motor Drives (유도전동기의 신속한 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.21-25
    • /
    • 2009
  • Magnetic fluxes for maximum efficiency are calculated at five operating points as speed and torque are varied. The surface of magnetic flux for maximum efficiency is calculated by using the five points, Then, maximum efficiency control is fulfilled with the magnetic flux calculated from the surface of magnetic flux at a given speed and torque. Simulation results verify the effectiveness of the proposed method.

NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE (1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

Numerical Study on the Clocking Effect in a 1.5 Stage Axial Turbine (1.5단 축류 터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.473-480
    • /
    • 2005
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since be first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

  • PDF

Enhancement of Wireless Power Transfer Efficiency Using Higher Order Spherical Modes

  • Kim, Yoon Goo;Park, Jongmin;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • We derive the Z-parameters for the two coupled antennas used for wireless power transfer under the assumption that the antennas are canonical minimum scattering antennas. Using the Z-parameter and the maximum power transfer efficiency formula, we determine the maximum power transfer efficiency of wireless power transfer systems. The results showed that the maximum power transfer efficiency increases as the mode number or the radiation efficiency increases. To verify the theory, we fabricate and measure two different power transfer systems: one comprises two antennas generating $TM_{01}$ mode; the other comprises two antennas generating $TM_{02}$ mode. When the distance between the centers of the antennas was 30 cm, the maximum power transfer efficiency of the antennas generating the $TM_{02}$ mode increased by 62 % compared to that of the antennas generating the $TM_{01}$ mode.

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

Maximum Efficiency Operation of Three-Level T-type Inverter for Low-Voltage and Low-Power Home Appliances

  • Shin, Seung-Min;Ahn, Jung-Hoon;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.586-594
    • /
    • 2015
  • This paper proposes a maximum efficiency operation strategy for three-level T-type inverter in entire operation areas. The three-level T-type inverter has higher and lower efficiency areas compared with two-level inverter. The proposed strategy aims to operate in the maximum efficiency point for the low-voltage and low-power home appliances. The three-level T-type inverter is analyzed in detail, and the two operation mode selection strategy is developed. The proposed algorithm is verified by theoretical analysis and experimental results.