Browse > Article
http://dx.doi.org/10.5695/JKISE.2015.48.3.105

Emission Characteristics of Multi-Tandem OLED using MoOx with CGL  

Kim, Ji-Hyun (Department of Advanced Materials Science and Engineering, Daejin University)
Ju, Sung-Hoo (Department of Advanced Materials Science and Engineering, Daejin University)
Publication Information
Journal of the Korean institute of surface engineering / v.48, no.3, 2015 , pp. 105-109 More about this Journal
Abstract
We studied emission characteristics of blue fluorescent multi-tandem OLEDs using $Al/MoO_x$ as charge generation layer(CGL). Threshold voltage for 2, 3, 4, and 5 units tandem OLEDs was 8, 11, 14 and 18 V, respectively. The threshold voltage in multi-tandem OLEDs was lower than multiple of 4 V for the single OLED. Maximum current efficiency and maximum quantum efficiency of single OLED were 7.6 cd/A and 5.5%. Maximum current efficiency for 2, 3, 4, and 5 units tandem OLEDs was 22.6, 31.4, 41.2, and 46.6 cd/A, respectively. Maximum quantum efficiency for 2, 3, 4, and 5 units tandem OLEDs was 11.8, 15.8, 21.8, and 25.6%, respectively. The maximum current efficiency and maximum quantum efficiency in multi-tandem OLEDs were higher than multiple of those for the single OLED. The intensity for 508 nm peak was changed and the peak wavelength was red shift by increase of tandem unit in electroluminescent emission spectra. These phenomena can be caused by micro-cavity effect with increasing of organic layer thickness.
Keywords
OLED; Tandem; CGL(Charge Generation Layer); Fluorescence; Efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51 (1987) 913.   DOI
2 T. Chiba, Y. J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, J. Kido, Organic Electronics, 12 (2011) 710.   DOI   ScienceOn
3 T. H. Kwak, S. H. Ju, J. Kor. Inst. Surf. Eng., 47 (2014) 104.   DOI   ScienceOn
4 M. Liu, P. Chen, Q. Xue, F. Jianga, G. Xie, J. Hou, Y. Zhao, L. Zhang, B. Li, Microelectronics Journal, 39 (2008) 1622.   DOI   ScienceOn
5 C. H. Chang, Z. J. Wu, Y. H. Liang, Y. S. Chang, C. H. Chiu, C. W. Tai, H. H. Chang, Thin Solid Films, 548 (2013) 389.   DOI   ScienceOn
6 T. Chib, Y. Pu, R. Miyazaki, K. Nakayam, H. Sasabe, J. Kido, Organic Electronics, 12 (2011) 710.   DOI   ScienceOn
7 Peng, H., Sun, J., Zhu, X., Yu, X., Wong, M., and Kwok, H.-S., Appl. Phys. Lett., 88 (2006) 073517.   DOI
8 Wu, C. C., Hsieh, P. Y., Lin, C. L., and Chiang, H. H., Appl. Phys. Lett., 84 (2004) 3966.   DOI
9 Chang, C.-H., Cheng, H.-C., Lu, Y.-J., Tien, K.-C., Lin, H.-W., Lin, C.-L., Yang, C.-J., and Wu, C.- C., Org. Electron., 11 (2010) 247.   DOI
10 C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett., 51 (1987) 913.   DOI
11 J. Clark, G. Lanzani, Nature, 4 (2010) 438.
12 T. Tsutsui, M. Terai, Appl. Phys. Lett., 84 (2004) 440.   DOI
13 T. Tsutsui, M. Terai, Appl. Phys. Lett., 90 (2007) 083502.   DOI   ScienceOn
14 Fawen Guo, Dongge Ma, Appl. Phys. Lett., 87 (2005) 173510.   DOI
15 Ping Chen, Wenfa Xie, Jiang Li, Tao Guan, Yu Duan, Yi Zhao, Shiyong Liu, Chunsheng Ma, Liying Zhang, Bin Li, Appl. Phys. Lett., 91 (2007) 023505.   DOI
16 P. S. Vincentt, W. A. Barlow, R. A. Hann, G. G.Roberts, Thin Solid Film, 94 (1982) 171.   DOI
17 R. H. Partridge, Polymer, 24 (1983) 748.   DOI