• Title/Summary/Keyword: Maximum bending moment

Search Result 244, Processing Time 0.03 seconds

Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment (감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우-)

  • Shim, Do-Jun;Lim, Hwan;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Stability Analysis of Multi-Functional Fishway with Underground Passage (지하이동통로가 구비된 다기능 어도의 안정성 검토)

  • Lee, Young-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.50-59
    • /
    • 2014
  • In this paper, Reinforced concrete (R/C) and R/C+steel plate concrete slab was carried out by SAP2000 software program in order to compare the stability of the multi-functional fishway, that is Bonggok fishway, built at Bonggok river recently in Gumi city, when the size of underground passage is $1m{\times}0.2m$, $1m{\times}0.4m$, $1m{\times}0.6m$ and the velocity is 0.8m/s, 1.2m/s, 1.6m/s respectively for the S2 (R/C+S/C). The analysis shows the maximum stress of S2 decreases less 26~50% than that of Bonggok, bending moment of sidewall decreases less 28~54%, maximum stress of side wall decreases less 17~31%, bending moment of upper slab decreases less 24~47%, maximum stress of upper slab decreases less 4~20%, and bending moment decreases less 10~27% than that of Bonggok. The complementation is required as much as the following percent; 27% and 25% for the maximum stress and bending moment of underground passage, 15% and 24% for the side wall maximum stress and bending moment, and 10% and 14% for the upper slab maximum stress and bending moment, respectively. This result shows that the S2 is greatly superior to that of the Bonggok fishway, and underground passage size of $1m{\times}0.4m$ is superior to that of $1m{\times}0.2m$ or $1m{\times}0.6m$, and R/C+S/C slab is superior to that of R/C slab. This result is expected to be the basic data for the construction and design of the multi-functional fishway.

Structural Analysis of Multi-Functional Fishway in Seomoon Weir (서문보의 다기능 어도의 구조해석)

  • Lee, Young Jae;Lee, Jung Shin;Jang, Hyung Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.308-319
    • /
    • 2020
  • In this study, the field applicability of the recently constructed multifunctional fishway in Seomunbo, Yeongcheon-si, and Gyeongsangbuk-do were examined. The analysis variables were R/C slab (S1) and R/C+S/C slab (S2), the underground passage standard areas (width × length) were 1.4 m × 0.2 m, 1.4 m × 0.3 m, and 1.4 m × 0.6 m, and the flow velocities were 0.8, 1.2, and 1.6 m/s. As a result of the analysis, the safety of the design of Seomunbo was evaluated. The analysis showed compared to the Seomoon Weir fishway, the maximum stress of S2 decreased by 24 - 32%, the bending moment of the underground passage decreased by 16 - 33%, the maximum stress of the sidewall decreased by 20 - 36%. In addition, the bending moment of the upper slab decreased by 17 - 33%, the maximum stress of the upper slab decreased by 9 - 28%, and the bending moment decreased by 19 - 33%. Complementation was required in the following percentages: 18% and 14% for the maximum stress and bending moment of the underground passage, respectively, 15% and 17% for the maximum sidewall stress and bending moment, respectively, and 11% and 16% for the upper slab maximum stress and bending moment, respectively. The results showed that S2 was superior to that of the Seomoon Weir fishway, and the underground passage size of 1.4 m × 0.3 m was superior to those of 1.4 m × 0.2 m and 1.4 m × 0.6 m, and R/C+S/C slab was superior to that of R/C slab. The findings are expected to be useful for constructing and designing the multifunctional fishway.

Effect of Bend Angle on the Behavior of pipe Bend under Internal Pressure and In-Plane Bending toads (내압과 내면 굽힘하중 조건에서 곡관의 거동에 미치는 굽힘각의 영향)

  • Kim Jin-Weon;Na Man-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.18-25
    • /
    • 2005
  • This study performed finite element analysis on the pipe bend with various bend angles under loading conditions of internal pressure and combined pressure and bending, to investigate the effect of bend angle on the collapse behavior of pipe bend and on the stress state in the bend region. In the analysis, the pipe bends with bend angle of $5\~90^{\circ}$ were considered, and the bending moment was applied as in-plane closing and opening modes. From the results of analysis, it was found that the collapse moment of pipe bend increases with decreasing bend angle. As the bend angle decreases, also, the equivalent stress at intrados region increases regardless of bending mode. Under closing mode bending especially, the increase in stress at intrados is significant so that the maximum stress region moves from crown to intrados with decreasing bend angle.

Effects of infilled concrete and longitudinal rebar on flexural performance of composite PHC pile

  • Bang, Jin Wook;Lee, Bang Yeon;Lee, Byung Jae;Hyun, Jung Hwan;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.843-855
    • /
    • 2014
  • Concrete infill and reinforcement are one of the most well-known strengthening methods of structural elements. This study investigated flexural performance of concrete infill composite PHC pile (ICP pile) reinforced by infill concrete and longitudinal rebars in hollow PHC pile. A total four series of pile specimens were tested by four points bending method under simply supported conditions and investigated bending moment experimentally and analytically. From the test results, it was found that although reinforcement of infilled concrete on the pure bending moment of PHC pile was negligible, reinforcement of PHC pile using infilled concrete and longitudinal rebars increase the maximum bending moment with range from 1.95 to 2.31 times than that of conventional PHC pile. The error of bending moment between experimental results and predicted results by nonlinear sectional analysis on the basis of the conventional layered sectional approach was in the range of -2.54 % to 2.80 %. The axial compression and moment interaction analysis for ICP piles shows more significant strengthening effects of infilled concrete and longitudinal rebars.

Limiting the sway on multi-storey un-braced steel frames bending on weak axis with partial strength connections

  • Tahir, Mahmood Md.;Ngian, Poi Shek
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.825-847
    • /
    • 2011
  • This paper investigates the design using wind-moment method for semi-rigid un-braced steel frames bending on weak axis. A limiting sway method has been proposed to reduce the frame sway. Allowance for steel section optimization between moment of inertia on minor axis column and major axis beam was used in conjunction with slope-deflection analysis to derive equations for optimum design in the proposed method. A series of un-braced steel frames comprised of two, four, and six bays ranging in height of two and four storey were studied on minor axis framing. The frames were designed for minimum gravity load in conjunction with maximum wind load and vice-versa. The accuracy of the design equation was found to be in good agreement with linear elastic computer analysis up to second order analysis. The study concluded that the adoption of wind-moment method and the proposed limiting sway method for semi-rigid steel frame bending on weak axis should be restricted to low-rise frames not more than four storey.

Constructability Analysis of Green Columns at the Low Bending Moment Zone

  • Lee, Sung-Ho;Park, Jun-Young;Lim, Chae-Yeon;Kim, Sun-Kuk
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.4
    • /
    • pp.12-19
    • /
    • 2013
  • Green Frame is an environmentally friendly column-beam system composed of composite PC members that can increase buildings' life spans while reducing resource consumption. Typically, connections of PC and RC columns occur at the boundaries of each floor, which is at the upper section of slabs, causing the boundary of each floor to generate the maximum moment. Although it is not optimal in terms of structural safety to connect members at a location where the moment is high, this approach is highly adopted due to its constructability. We propose that a superior approach that employs the concept of connecting columns at the low bending moment zone can be applied to quickly and safely install green columns, the main structural members of Green Frame. Connection of green columns at the low bending moment zone can be classified into three techniques, depending on the method of reinforcing the joints, which have different connection characteristics and construction methods. Research is needed to compare the features of each method of reinforcing the joints so that the most appropriate column connection method can be chosen for the site conditions. This study aims to confirm the structural safety of the connection component at the low bending moment zone and to compare and analyze the construction duration, unit price, quality and safety performance of each column connection method. The study results are anticipated to activate the use of composite precast concrete and to be used as development data in the future.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

Analytical Investigation on the Behavior of Simple Span Integral Abutment Bridge (단경간 일체식교대 교량의 거동에 대한 해석적 연구)

  • 홍정희;정재호;박종면;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.99-106
    • /
    • 2002
  • This paper presents an analytical investigation on the behavior of simple span integral abutment bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. Although the temperature variation and earth pressure are the major attributor to the total stress in integral abutment bridge, the superstructure has been designed by modeling it as a simple or continuous beam In order to investigate the effect of temperature change and earth pressure on the superstructure of integral bridge, the simple span integral bridge is modeled as a plane frame element. Performing frame analysis, the variations of bending moment and axial force of superstructure due to the various loading combination are investigated with respect to the flexural rigidity of piles, and the bending moment and axial force obtained by frame analysis are compared with the maximum bending moment obtained by conventional design method and initial prestressing force respectively.

  • PDF