• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.031 seconds

Enhancement of the Strength of MgO-Based Binder by Accelerated Carbonation (촉진탄산염화에 의한 마그네슘계 고화제의 강도 향상 특성)

  • Yun, Do Youn;Ahn, Jun-Young;Kim, Cheolyong;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.135-145
    • /
    • 2016
  • MgO recently has been regarded as the alternative material for replacement of cement. The aim of this study is to investigate the effects of accelerated carbonation on the strength development of MgO-based binder which is binary mixtures of magnesium oxide (MgO) with portland cement (PC) or ground granulated blast furnace slag (GGBS) or fly ash (FA). The compressive strengths of all binders were higher in the 20% $CO_2$ condition and for longer curing time. The strength were generally higher as the following order: MgO/PC > MgO/GGBS > MgO/FA system. The binder composed of 20% MgO and 80% PC showed highest compressive strength (38.0MPa) which was higher than PC. The correlation analysis of the porosity and compressive strength showed that compressive strength was higher when porosity was lower. The hydration and carbonation products of MgO including brucite ($Ca(OH)_2$), magnesite ($MgCO_3$) and nesquehonite ($MgCO_3{\cdot}3H_2O$) presumably filled the pores and contributed to strength development. Thermogravimetric analyses elucidated that 0.34 kg of $CO_2$ could be stored the 50% MgO/50% PC binder which performed the maximum $CO_2$ uptake at 20% $CO_2$ condition.

Degradation Characteristics of Algae Coagulated with Poly Aluminum Chloride by Thermophilic Oxic Process (고온·호기법을 이용한 Poly Aluminum Chloride에 의해 응집된 조류의 분해특성)

  • Yang, Jae-Kyung;Choi, Kyung-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The biodegradation of algae coagulated with poly aluminum chloride(PAC) was investigated by using the thermophilic oxic process. The compositions of coagulated algae were 83.5% of water content, 24.6% of ash, 32% of organic carbon with in total solid, respectively. In present study, food waste oil was used for the increment of calorie of mixtures in order to accelate the microbial activity. As a result, the maximum temperature of mixtures was higher than $50^{\circ}C$ when the mixing ratio of food oil was over 10%. However the temperature indicated the lower than $50^{\circ}C$ when conditions of no mixing with waste food oil, and 5% of mixing ratio. Therefore, the optimum condition was 10% of the mixing ration at $217l{\cdot}m^{-3}{\cdot}min^{-1}$ of air supply rate. The conversion efficiency of carbon was highest as 92% at the optimum condition. And then water was evaluated from imxture without accumulation at 10% of mixing ratio. The thermophilic oxic process well conducted that is good process for the treatment of waste algae without effluents however it has to consider the retreatment of accumulated aluminum in the reactor.

  • PDF

Prediction of shiver differentiation by the form alteration on the stable condition

  • Kim, Jeong-lae;Kim, Kyu-dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • Movement technique is comprised of the movement status of the circulation differentiation rate (CDR) and rotation differentiation rate (RDR) on the shiver movement form. Condition of the differentiation rate by the shiver movement form is to be modified the teetering movement system. As to fix the movement of signal on the material of body, we compared a shiver value of the circulation differentiation rate on the circulation state. The concept of rotation differentiation rate was identified the reference of rotation differentiation signal and rotation differentiation signal by the rotation state. For detecting a alteration of the CDR-RDR of the maximum and average in terms of the movement form, and shiver movement value that was a shiver value of the top alteration of the Top-ф$_{MAX-AVG}$ with $12.80{\pm}1.27units$, that was a shiver value of the peripheral alteration of the Per-ф$_{MAX-AVG}$ with $4.38{\pm}1.15units$, that was a shiver value of the limbus alteration of the Lim-ф$_{MAX-AVG}$ with $1.65{\pm}0.25units$, that was a shiver value of the center alteration of the Cen-ф$_{MAX-AVG}$ with $0.25{\pm}0.01units$. The teetering movement will be to assess at the ability of the movement form for the control degree of differentiation rate on the CDR-RDR that was shown the circulation and rotation form by the differentiation rate system. Teetering differentiation system was modified of a form by the special movement and was included a shiver data of teetering movement rate.

Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products (목질계 농부산물을 이용한 고체발효에서 발효조건 최적화를 통한 구연산 생산 증대)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.402-406
    • /
    • 2014
  • The present study was carried out to evaluate the potential of lignocellulosic byproducts for the production of citric acid through solid-state fermentation by Aspergillus niger NRRL 567. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation conditions and media constituents. The results obtained from the optimization indicated that $30^{\circ}C$, 70% moisture content, 0.5~1.0 mm particle size, pH 5.5 and 4% methanol were found to be the optimum condition at 72 hr fermentation. The application the optimization resulted in an improvement of maximum citric acid production from 74.5 to 206.0 g/kg dry material (DM) from wheat straw. The optimal condition was used to produce citric acid from A. niger grown on different lignocellulosic byproducts, including wheat straw, corn stover and peat moss. A. niger produced the highest citric acid levels of 231.8, 213.8 and 240.2 g/kg DM at 120 hr fermentation, respectively.

Effect of Reverse Cyclic Loading on the Fracture Resistance Curve of Nuclear Piping Material (역사이클하중이 원자력 배관재료의 파괴저항곡선에 미치는 영향)

  • Weon, Jong-Il;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1112-1119
    • /
    • 1999
  • Fracture resistance(J-R) curves, which are used for the elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to study the effect of reverse cyclic loading on J-R curves in CT specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio(R) and the other was the incremental plastic displacement(${\delta}_{cycle}/{\delta}_i$), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance test on CT specimens with varying load ratio and incremental plastic displacement were performed. For the SA 516 Gr. 70 steel, the results showed that the J-R curves were decreased with decreasing the load ratio and the incremental plastic displacement. When the load ratio was set to -1, the results of the J-R curves and the $J_i$ value were about $40{\sim}50$ percent of those for the monotonic loading condition. Also on condition that the incremental plastic displacement reached 1/40, the J-R curves and the $J_i$ value were about $50{\sim}60$ percent of those for the incremental plastic displacement of 1/10.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

A Study on Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (단섬유 강화 Chloroprene 고무의 동적특성 연구)

  • 이동주;류상렬
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The dynamic properties of short-fiber reinforced chloroprene rubber with different interphase conditions and fiber contents have been studied as functions of frequency, amplitude and temperature. The loss factor(LF) slightly increased more than 1.33% of strain and the dynamic ratio(DR) rapidly decreased with increasing strain amplitude. The LF rapidly decreased with increasing frequency especially more than 50Hz. The DR showed the lower when it compared to virgin material with increasing frequency. The LF showed the maximum at $65^{\circ}$ and rapidly decreased after that temperature. The DR showed the lower when it compared with virgin rubber with increasing temperature. Generally, the better interphase condition showed the lower LF and DR at the same testing condition. Therefore, the short-fiber reinforced rubber could have the better isolation when the frequency ratio is more than $\sqrt{2}$ compared with frequency ratio less than $\sqrt{2}$.

Experimental Study on Capacity Variation of Paving Materials with TiO2 in Wet Condition (광촉매 이산화티타늄(TiO2)을 혼합한 도로 포장재의 습윤 조건에서의 성능 변화에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • This study aims to present the practical Nitrogen monoxide (NO) removal capacity of cement mortar with Titanium dioxide ($TiO_2$) which is one of the paving materials by considering the environment of pavement in urban areas. NO removal capacity test under designated conditions of humidity of inflow gas and the test with variation of the degree of saturation of specimen were conducted. In the test for humidity, dry specimen is subject to the test and NO removal ratio was observed. Humidity-NO removal ratio curve is a log normal distribution in shape, and the maximum NO removal ratio appears at specific humidity. NO removal capacity test relying on the degree of saturation was carried out with wet specimen to reflect the unsaturated pavement by rainfall and domestic sewage. Wet specimen presents less NO removal capacity than dry specimen and the recovering evolution of NO removal capacity follows evaporation. Moreover, $TiO_2$ under the specific depth of specimen hardly contributes to NO removal capacity.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.