Browse > Article
http://dx.doi.org/10.4014/jmb.2106.06032

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production  

Trakarnpaiboon, Srisakul (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology)
Bunterngsook, Benjarat (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology)
Wansuksriand, Rungtiva (Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology)
Champreda, Verawat (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1455-1464 More about this Journal
Abstract
Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.
Keywords
Trehalose; trehalose synthase; maltose; Pseudomonas monteilii;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kobayashi K, Komeda T, Miura Y, Kettoku M, Kato M. 1997. Production of trehalose from starch by novel trehalose-producing enzymes from Sulfolobus solfataricus KM1. J. Ferment. Bioeng. 83: 296-298.   DOI
2 Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, et al. 1995. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 59: 1829-1834.   DOI
3 Lee JH, Lee KH, Kim CG, Lee SY, Kim GJ, Park YH, et al. 2005. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol. Biotechnol. 68: 213-219.   DOI
4 Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF. 2007. Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J. Agric. Food Chem. 55: 3435-3443.   DOI
5 Yue M, Wu XL, Gong WN, Ding HB. 2009. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei. Microb. Cell Fact. 8: 34.   DOI
6 Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, et al. 1997. Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923. Biochim. Biophys. Acta 1334: 28-32.   DOI
7 Chen YS, Lee GC, Shaw JF. 2006. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J. Agric. Food Chem. 54: 7098-7104.   DOI
8 Filipkowski P, Pietrow O, Panek A, Synowiecki J. 2012. Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli. Acta Biochim. Pol. 59: 425-431.
9 Cho YJ, Park OJ, Shin HJ. 2006. Immobilization of thermostable trehalose synthase for the production of trehalose. Enzyme Microb. Technol. 39: 108-113.   DOI
10 Zhu Y, Wei D, Zhang J, Wang Y, Xu H, Xing L, et al. 2010. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber. Extremophiles 14: 1-8.   DOI
11 Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, et al. 2019. Characterization of a recombinant trehalose synthase from Arthrobacter chlorophenolicus and its unique kinetics indicating a substrate cooperativity. Appl. Biochem. Biotechnol. 187: 1255-1271.   DOI
12 Kuschel B, Seitl I, Gluck C, Mu W, Jiang B, Stressler T, et al. 2017. Hidden reaction: mesophilic cellobiose 2-epimerases produce lactulose. J. Agric. Food Chem. 65: 2530-2539.   DOI
13 Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, et al. 2018. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl. Microbiol. Biotechnol. 102: 2965-2976.   DOI
14 Keenleyside W. 2019. Microbiology: Canadian Edition. Pressbooks, Montreal, Canada.
15 Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, et al. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch-Starke. 49: 26-30.   DOI
16 Li Y, Sun X, Feng Y, Yuan Q. 2015. Cloning, expression and activity optimization of trehalose synthase from Thermus thermophilus HB27. Chem. Eng. Sci. 135: 323-329.   DOI
17 Wiemken A. 1990 Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 58: 209-217.   DOI
18 Koh S, Kim J, Shin HJ, Lee D, Bae J, Kim D, et al. 2003.Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydr. Res. 338: 1339-1343.   DOI
19 Schiraldi C, Lernia I Di, Rosa M De. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20: 420-425.   DOI
20 Liang J, Huang R, Huang Y, Wang X, Du L, Wei Y. Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. J. Mol. Catal. B Enzym. 90: 26-32.   DOI
21 Chakraborty S, Raut G, Khopade A, Mahadik K, Kokare C. 2012. Study on calcium ion independent α-amylase from haloalkaliphilic marine Streptomyces strain A3. Indian J. Biotech. 11: 427-437.
22 Gao Y, Xi Y, Lu XL, Zheng H, Hu B, Liu XY, et al. 2013. Cloning, expression and functional characterization of a novel trehalose synthase from marine Pseudomonas sp. P8005. World J. Microbiol. Biotechnol. 29: 2195-2206.   DOI
23 Lin YF, Su PC, Chen PT. 2020. Production and characterization of a recombinant thermophilic trehalose synthase from Thermus antranikianii. J. Biosci. Bioeng. 129: 418-422.   DOI
24 Ohtake S, Wang, YJ. 2011. Trehalose: current use and future applications. J. Pharm. Sci. 100: 2020-2053.   DOI
25 Burek M, WASKIEWICZ S, Wandzik I. 2015. Trehalose-properties, biosynthesis and applications. Methods. 3: 9-10.
26 Higashiyama T. 2002. Novel functions and applications of trehalose. Pure Appl. 74: 1263-1269.   DOI
27 Lemieux RU, Bauer HF. 1954. A chemical synthesis of D-trehalose. Can. J. Chem. 32: 340-344.   DOI
28 Elbein AD, Pan YT, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R-27R.   DOI
29 Mahmud SA, Hirasawa T, Shimizu H. 2010. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J. Biosci. Bioeng. 109: 262-266.   DOI
30 Teramoto N, Sachinvala ND, Shibata M. 2008. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13: 1773-1816.   DOI
31 Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Caroll JD, Pastuszak I, et al. 2004. Trehalose synthase of Mycobacterium smegmatis. Eur. J. Biochem. 271: 4259-4269.   DOI
32 Nguyen THT, Nguyen TT, Le TH, Nguyen TAT, Nguyen MD, Le, DM, Do TT. 2018. Screening bacterial strains for production of maltooligosyl trehalose trehalohydrolase and maltooligosyl trehalose synthase. J. Viet. Env. 9: 55-60.   DOI
33 Kim TK, Jang JH, Cho HY, Lee HS, Kim YW. 2010. Gene cloning and characterization of a trehalose synthase from Corynebacterium glutamicum ATCC13032. Food Sci. Biotechnol. 19: 565-569.   DOI
34 Zhu Y, Zhang J, Wei D, Wang Y, Chen X, Xing L, et al. 2008. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China. Biosci. Biotechnol. Biochem. 72: 2019-2024.   DOI
35 Dong Y, Ma L, Duan Y. 2016. The effect of high pressure on the intracellular trehalose synthase activity of Thermus aquaticus. World J. Microbiol. 32: 11.   DOI
36 Janecek S, Svensson B, MacGregor EA. 2014. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170.   DOI
37 Wang J, Ren X, Wang R, Su J, Wang F. 2017. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. J. Agric. Food Chem. 65: 7726-7735.   DOI
38 Yan J, Qiao Y, Hu J, Ding H. 2013. Cloning, expression and characterization of a trehalose synthase gene from Rhodococcus opacus. Protein J. 32: 223-229.   DOI
39 Vardharajula S. 2013. Isolation and identification of a thermotolerant plant growth promoting Pseudomonas putida producing trehalose synthase. J. Microbiol. Biotechnol. Food Sci. 3: 63-68.
40 Wu XL, Ding HB, Yue M, Qiao Y. 2009. Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl. Microbiol. Biotechnol. 83: 477-482.   DOI
41 Yang S, Lv X, Wang X, Wang J, Wang R, Wang T. 2017. Cell-surface displayed expression of trehalose synthase from Pseudomonas putida ATCC 47054 in Pichia pastoris using Pir1p as an anchor protein. Front. Microbiol. 8: 2583.   DOI
42 Liu H, Yang S, Wang X, Wang T. 2019. Production of trehalose with trehalose synthase expressed and displayed on the surface of Bacillus subtilis spores. Microb. Cell Fact. 18: 1-13.   DOI
43 Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, et al. 2011. Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis. J. Biol. Chem. 286: 35601-35609.   DOI
44 Dueholm MS, Albertsen M, D'Imperio S, Tale VP, Lewis D, Nielsen, PH., et al. 2014. Complete genome sequences of Pseudomonas monteilii SB3078 and SB3101, two benzene-, toluene-, and ethylbenzene-degrading bacteria used for bioaugmentation. Genome Announ. 2: e00514-e00524.
45 Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, et al. 2016. Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. J. Agric. Food Chem. 64: 6179-6187.   DOI
46 Buisson G, Duee E, Haser R, Payan F. 1987. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 6: 3909-3916.   DOI
47 Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M. 2003. Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J. Biol. Chem. 278: 9875-9884.   DOI
48 Chai KP, Othman NFB, Teh A-H, Ho KL, Chan K-G, Shamsir MS, et al. 2016. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep. 6: 23126.   DOI
49 Li H, Chi Z, Wang X, Duan X, Ma L, Gao L. 2007. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb. Technol. 40: 1006-1012.   DOI