Browse > Article
http://dx.doi.org/10.7857/JSGE.2016.21.6.135

Enhancement of the Strength of MgO-Based Binder by Accelerated Carbonation  

Yun, Do Youn (School of Civil & Environmental Engineering, Pusan National University)
Ahn, Jun-Young (School of Civil & Environmental Engineering, Pusan National University)
Kim, Cheolyong (School of Civil & Environmental Engineering, Pusan National University)
Kim, Tae Yoo (School of Civil & Environmental Engineering, Pusan National University)
Hwang, Inseong (School of Civil & Environmental Engineering, Pusan National University)
Publication Information
Journal of Soil and Groundwater Environment / v.21, no.6, 2016 , pp. 135-145 More about this Journal
Abstract
MgO recently has been regarded as the alternative material for replacement of cement. The aim of this study is to investigate the effects of accelerated carbonation on the strength development of MgO-based binder which is binary mixtures of magnesium oxide (MgO) with portland cement (PC) or ground granulated blast furnace slag (GGBS) or fly ash (FA). The compressive strengths of all binders were higher in the 20% $CO_2$ condition and for longer curing time. The strength were generally higher as the following order: MgO/PC > MgO/GGBS > MgO/FA system. The binder composed of 20% MgO and 80% PC showed highest compressive strength (38.0MPa) which was higher than PC. The correlation analysis of the porosity and compressive strength showed that compressive strength was higher when porosity was lower. The hydration and carbonation products of MgO including brucite ($Ca(OH)_2$), magnesite ($MgCO_3$) and nesquehonite ($MgCO_3{\cdot}3H_2O$) presumably filled the pores and contributed to strength development. Thermogravimetric analyses elucidated that 0.34 kg of $CO_2$ could be stored the 50% MgO/50% PC binder which performed the maximum $CO_2$ uptake at 20% $CO_2$ condition.
Keywords
MgO-based binder; Accelerated carbonation; Compressive strength; Industrial by-products; Portland cement;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Yi, Y., Liska, M., Unluer, C., and Al-Tabbaa, A., 2013, Carbonating magnesia for soil stabilization, Can. Geotech. J., 50(8), 899-905.   DOI
2 Alhozaimy, A., Al-Negheimish, A., Alawad, O. A., Jaafar, M. S., and Noorzaei, J., 2012, Binary and ternary effects of ground dune sand and blast furnace slag on the compressive strength mortar, J. Cem. Concr. Compos., 34, 734-738.   DOI
3 Ali, M.B., Saidur, R., and Hossain, M. S., 2011, A review on emission analysis in cement industries, J. Renewable and Sustainable Energy, 15, 2252-2261.   DOI
4 Atis, C.D., 2003, Accelerated carbonation and testing of concrete made with fly ash, J. Constr. Build. Mater., 17, 147-152.   DOI
5 Benhelal, E., Zahedi, G., Shamsaei, E., and Bahadori, A., 2013, Global strategies and potentials to curb $CO_2$ emissions in cement industry, J. Cleaner Prod., 51, 142-161.   DOI
6 Choate, W.T., 2003, Energy and Emission Reduction Opportunities for the Cement Industry. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program. p.55.
7 Duxson, P., Provis, J.L., Lukey, G.C., and van Deventer, J.S., 2007, The role of inorganic polymer technology in the development of 'green concrete', J. Cem. Concr. Res., 37, 1590-1597.   DOI
8 Du, C., 2005, A review of magnesium oxide in concrete, Concr. Int., 45-50.
9 Gao, P., W, S., Lu, X., D, Min., Lin, P., Wu, Z., and Tang, M., 2007, Soundness evaluation of concrete with MgO, J. Constr. Build. Mater., 21, 132-138.   DOI
10 Gao, P., Lu, X., Geng, F., Li, X., Hou, J., Lin, H., and Shi, N., 2008, Production of MgO-type expansive agent in dam concrete by use of industrial by-products, Build. Environ., 43, 453-457.   DOI
11 Haha, M, B., Lothenbach, B., and Saout, G. L., and Winnefeld, F., 2011, Influence of slag chemistry on the hydration of alkaliactivated blast-furnace slag-Part I: Effect of MgO, J. Cem. Concr. Res., 41, 955-963.   DOI
12 Hwang, K.-Y., Seo, J.-Y., Phan, Hoang Q. H., Ahn, J,-Y., and Hwang, I., 2013, MgO-Based Binder for Treating Contaminated Sediments: Characteristics of Metal Stabilization and Mineral Carbonation, CLEAN SOIL AIR WATER, 42(3), 355-363.
13 Iwasaki and Tada, S., 1985, Carbonation of Aerated Concrete, Beijing Int. Symp. Cem. Concr., 3, 414-423.
14 Kwon, Y.H., Kwon, Y.H., and Lee, D.G., 2013, A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products, J. Rec Const Resources, 1(1), 58-66.
15 Jang, B., Kwon, Y., Choi, S., and Lee, K., 2011, Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders, J. Korea Concrete Institute, 23(2), 225-233.   DOI
16 Jin, F., Gu, K., and Al-Tabbaa, a., 2014, Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste, J. Constr. Build. Mater., 51, 395-404.   DOI
17 Jin, F. and Al-Tabbaa, b., 2014, Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc, Chemosphere, 117, 285-294.   DOI
18 Kim J.Y., 2014, Characteristics of heavy metals immobilization and carbonation of MgO-based binder depending on $CO_2$ con centration, Master dissertation, Pusan National University, Korea
19 Kim, T. and Jun, Y., 2015, The Strength and Drying Shrinkage Properties of Alkali-activated Slag using Hard-burned MgO, J. the Korea Institute for Structural Maintenance and Inspection, 19(3), 39-47.   DOI
20 Li, X., Ma, X., Zhang, S., and Zheng, E., 2013, Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar, J. Mater., 6, 1485-1495.   DOI
21 Lui, Z., Cui X., and Tang, M., 1992, Hydration and Setting Time of MgO-type Expansive Cement, Cement and Concrete Research, 22(1), 1-5.   DOI
22 Mo, L., Deng, M., Tang, M., and Al-Tabbaa, A., 2014, MgO expansive cement and concrete in China: Past, present and future, J. Cem. Concr. Res., 57, 1-12.   DOI
23 Maria, S.K. and Suurenda, P.S., 2003, Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag, J. Cem. Concr. Res., 33, 1269-1267.   DOI
24 Maroto-Valer, M.M., Fauth, D.J., Kuchta, M.E., Zhang, Y., and Andresen, J.M., 2005, Activation of magnesium rich minerals as carbonation feedstock materials for $CO_2$ sequestration, Fuel Process. Technol., 86, 1627-1645.   DOI
25 McCarthy, M.J. and Dhir, R.K., 2005, Development of high volume fly ash cements for use in concrete construction, Fuel, 84, 1423-1432.   DOI
26 Mo, L., Deng, M and Tang, M., 2010, Potential Approach to Evaluating Soundness of Concrete Containing MgO-Based Expansive Agent, J. Mater., 107(2), 99-105.
27 Mo, L. and Panesar, D.K., 2012, Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO, J. Cem. Concr. Res., 42, 769-777.   DOI
28 Morandeau, A., Thiery, M., and Dangla, P., 2015, Impact of accelerated carbonation on OPC cement paste blended with fly ash, J. Cem. Concr. Res., 67, 226-236.   DOI
29 Panesar, D.K. and Mo, L., 2013, Properties of binary and ternary reactive MgO mortar blends subjected to $CO_2$ curing, J. Cem. Concr. Compos., 38, 40-49.   DOI
30 Palacios, M. and Puertas, F., 2006, Effect of Carbonation on Alkali-Activated Slag Paste, J. Am. Ceram. Soc., 89(10), 3211-3221.   DOI
31 Sung, M., Cho, H., and Lee, H., 2015, Properties of Cement Paste Containing High Volume ${\gamma}$-C2S and MgO Subjected to $CO_2$ Curing, Korea Institute of Building and Construction, 15(3), 281-289.   DOI
32 Unluer, C. and Al-Tabbaa, A., 2013, Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements, J. Cem. Concr. Res., 54, 87-97.   DOI
33 Vahid, R,, Yixin, S., and Andrew, J.B., 2012, Carbonation curing versus steam curing for precast concrete production, J. Mater. Civ. Eng., 10, 1221-1229.
34 Vandeperre, L.J. and Al-Tabbaa, A., 2007, Accelerated Carbonation of Reactive MgO Cement, Adv. Cem. Res., 38, 40-49