• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.038 seconds

CrC Interlayer Effect on Tribological Properties of Amorphous Carbon Deposited by UBMS Method (비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구)

  • Kim, Phil Jung;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.475-480
    • /
    • 2018
  • We investigated the tribological properties of amorphous carbon (a-C) films deposited with CrC interlayers of various thicknesses as the adhesive layer. A-C and CrC thin films were deposited using the unbalanced magnetron (UBM) sputtering method with graphite and chromium as the targets. CrC films as the interlayer were fabricated under a-C films, and various structural, surface, and tribological properties of a-C films deposited with various CrC interlayer thicknesses were investigated. With various CrC interlayer thicknesses under a-C films, the tribological properties of CrC/a-C films were improved; the increased film thickness exhibited a maximum high hardness of over 27.5 GPa, high elastic modulus of over 242 GPa, critical load of 31 N, residual stress of 1.85 GPa, and a smooth surface below 0.09 nm at the condition of 30-nm CrC thickness.

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

A study on the I-V Properties of Long Chain Fatty Acid of LB Thin Films (장쇄지방산 LB박막의 전류-전압 특성에 관한 연구)

  • Chon, Dong-Kyu;Chang, Hun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.913-919
    • /
    • 2000
  • We give pressure stimulation into long chain fatty acid of LB thin films then manufacture a device under the accumulation condition that the state surface pressure is 20[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Arachidic acid/Al, the number of accumulated layers are 13, 17 and 19. The I-V characteristic of the device is measured from 0[V] to +1.5[V]. We have investigated the capacitance because this fatty acid system have a accumulated layers. The maximum value of measured current is increased as the number of accumulated layers are decreased. The capacitor properties of a thin film is better as the distance between electrodes is smaller. The results have shown the insulating materials and could control the conductivity by accumulated layers.

  • PDF

Aging Characteristics of Solder bump Joint for High Reliability Optical module (광모듈 솔더 접합부의 시효 특성에 관한 연구)

  • Kim, Nam-Kyu;Kim, Kyung-Seob;Kim, Nam-Hoon;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.204-207
    • /
    • 2003
  • The flip chip bonding utilizing self-aligning characteristic of solder becomes mandatory to meet to tolerances for the optical device. In this paper, a parametric study of aging condition and pad size of sample was conducted. A TiW/Cu UBM structure was adopted and sample was aging treated to analyze the effect of intermetallic compound with time variation. After aging treatment, the tendency to decrease in shear strength was measured and the structure of the fine joint area was observed by using SEM, TEM and EDS. In result, the shear strength was decreased of about 20% in the $100{\mu}m$ sample at $170^{\circ}C$ aging compared with the maximum shear strength of same pad size sample. In the case of the $120^{\circ}C$ aging treatment, 17% of decrease in shear strength was measured at the $100{\mu}m$ pad size sample. Also, intremetallic compound of $Cu_6Sn_5$ and $Cu_3Sn$ were observed through the TEM measurement by using an FIB technique that is very useful to prepare TEM thin foil specimens from the solder joint interface.

  • PDF

Diagnosis Technique of Surface Aging according to Various Environment Condition for Silicon Polymer Insulator (여러환경조건에 의한 Silicon애자의 표면열화 진단기술)

  • Park, Jae-Jun;Jung, Myeong-Yeon;Lee, Seung-Wook;Kim, Jeong-Boo;Song, Young-Chul;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.76-81
    • /
    • 2004
  • This paper presents the results of spectral analysis of leakage current waveforms on contaminated insulators under various fog and environment conditions(salt fog, clean fog, rain) The larger the leakage current during 200ms, the higer the power spectrum at 60Hz. For almost equal maximum current during 200ms, however, the spectrum at 60hz and the odd order harmonics increase emphatically when discharges occur continuously for several half-waves. If contaminated insulators suffers from high salt-density fog, the leakage current occurs with high crest value intermittently, results in the low spectrum. Analysis of leakage current data showed that this electrical activity was characterized by transient arcing behavior contaminants are deposited on the insulator surface during salt fog tests. This provides a path for the leakage current to flow along the surface of the insulator. It is important to have an indication of the pollution accumulation in order to evulate the test performance of a particular insulator. If the drop in surface resistivity is severe enough, then the leakage current may escalate into s service interrupting flashover that degrade power quality.

  • PDF

Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications (파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성)

  • Ahn, Jung-Hac;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Formation Characteristics of Hard Anodizing Films on 6xxx Aluminum Alloys (6xxx계 알루미늄 합금의 경질 아노다이징 피막 형성 특성 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Lim, Sugun
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • In this work, anodizing behavior of 6xxx series aluminum alloys was studied under constant current density and constant voltage conditions in 20% sulfuric acid solution by V-t curves, I-t curves, thickness measurement, observations of surface appearance and cross-sectional observation of anodizing films. The film growth rate of the anodizing films on Al6063, Al6061 and Al6082 obtained at 20 V were $0.63{\mu}m/min$. $0.46{\mu}m/min$ and $0.38{\mu}m/min$, respectively. Time to the initiation of imperfections at the oxide/substrate interface under constant current condition was shortened and colors of anodizing films became darker with the amount of alloying elements in 6xxx series aluminum alloys. Based upon the experimental results obtained in this work, it is concluded that maximum anodizing film thickness without interfacial defects is reduced with increasing amount of alloying elements and brighter anodizing films can be obtained by decreasing amount of alloying elements in the aluminum alloys.

CFD analysis of the flow blockage in a rectangular fuel assembly of the IAEA 10 MW MTR research reactor

  • Xia, Shuang;Zhou, Xuhua;Hu, Gaojie;Cao, Xiaxin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2847-2858
    • /
    • 2021
  • When a nuclear reactor with rectangular fuel assemblies runs for a long time, impurities and debris may be taken into coolant channels, which may cause flow blockage, and the blocked fuel assemblies might be destroyed. Therefore, the purpose of this study is to perform a thermal-hydraulic analysis of a rectangular fuel assembly by STAR-CCM+, under the condition of one subchannel with 80% blockage ratio. A rectangular fuel assembly of the International Atomic Energy Agency (IAEA) 10 MW material test reactor (MTR) is chosen. In view of the gasket material taken into the coolant channel is close to the single side of the coolant channel, in the flow blockage accident of the Oak Ridge Research Reactor (ORRR), a new blockage category called single side blockage is attempted. The blockage positions include inlet, middle and outlet, and the blockage is set as a cuboid. It is found by simulations that the blockage redistributes the mass flow rate, and large vortices appear locally. The peak temperature of the cladding is maximum, when the blockage is located at the single side of the coolant channel inlet, and no boiling occurs in all blockage cases. Moreover, as the height of the blockage increases, the damage caused by the blockage increases slightly.

A Study on Characteristics of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering Method for the Application of Diffusion Barrier Layers in Displays (디스플레이 확산 방지층 응용을 위한 비대칭 마그네트론 스퍼터로 증착된 질화 티타늄 박막의 특성에 대한 연구)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.129-133
    • /
    • 2019
  • TiN thin films were fabricated using an unbalanced magnetron sputtering (UBMS) system, and their structure and surface characteristics as well as their optical and tribological properties were evaluated. The hardness, elastic modulus, adhesive force, surface roughness, and transmittance of the Ti thin films fabricated using the UBMS system were 11.5 GPa, 103 GPa, 27.5 N, 2.45 nm and 20%, respectively. The TiN films prepared with various proportions of nitrogen as the reaction gas exhibited maximum values for the hardness, elastic modulus, critical load, RMS roughness and transmittance of approximately 19.2 GPa, 182 GPa, 27.3 N, 0.98 nm, and 85%, respectively. Moreover, the TiN thin film fabricated under the condition of 30 sccm nitrogen gas showed the optimal physical properties. In summary, the TiN thin films fabricated using the UBMS system exhibited excellent hardness, elastic modulus, adhesion, and smooth surface in addition to good hydrophilic properties.

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.