Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.2.129

A Study on Characteristics of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering Method for the Application of Diffusion Barrier Layers in Displays  

Park, Yong Seob (Department of Electronics, Chosun College of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.2, 2019 , pp. 129-133 More about this Journal
Abstract
TiN thin films were fabricated using an unbalanced magnetron sputtering (UBMS) system, and their structure and surface characteristics as well as their optical and tribological properties were evaluated. The hardness, elastic modulus, adhesive force, surface roughness, and transmittance of the Ti thin films fabricated using the UBMS system were 11.5 GPa, 103 GPa, 27.5 N, 2.45 nm and 20%, respectively. The TiN films prepared with various proportions of nitrogen as the reaction gas exhibited maximum values for the hardness, elastic modulus, critical load, RMS roughness and transmittance of approximately 19.2 GPa, 182 GPa, 27.3 N, 0.98 nm, and 85%, respectively. Moreover, the TiN thin film fabricated under the condition of 30 sccm nitrogen gas showed the optimal physical properties. In summary, the TiN thin films fabricated using the UBMS system exhibited excellent hardness, elastic modulus, adhesion, and smooth surface in addition to good hydrophilic properties.
Keywords
TiN; Unbalanced magnetron sputtering; Tribology; Hardness; Critical load;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Ahmed, S. Cioc, C. Cioc, and A. H. Jayatissa, Colloid Surf. Sci., 2, 137 (2017). [DOI: https://doi.org/10.11648/j.css.20170204.13]
2 M. R. Chavda, D. P. Dave, K. V. Chauhan, and S. K. Rawal, Procedia Technol., 23, 36 (2016). [DOI: https://doi.org/10.1016/j.protcy.2016.03.070]   DOI
3 D. G. Sangiovanni, Linkoping Studies in Science and Technology, Dissertation, No.1513 (2013). [DOI: https://liu.diva-portal.org/smash/get/diva2:617410/FULLTEXT01.pdf]
4 P. J. Kelly, T. vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, Surf. Coat. Technol., 202, 774 (2007). [DOI: https://doi.org/10.1016/j.surfcoat.2007.07.047]   DOI
5 X. T. Zeng, S. Zhang, C. Q. Sun, and Y. C. Liu, Thin Solid Films, 424, 99 (2003). [DOI: https://doi.org/10.1016/S0040-6090(02)00921-5]   DOI
6 N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, Surf. Coat. Technol., 128, 156 (2000). [DOI: https://doi.org/10.1016/S0257-8972(00)00574-0]   DOI
7 J. E. Sundgren, Thin Solid Films, 128, 21 (1985). [DOI: https://doi.org/10.1016/0040-6090(85)90333-5]   DOI
8 J. E. Sundgren and H.T.G. Hentzell, J. Vac. Sci. Technol., A, 4, 2259 (1986). [DOI: https://doi.org/10.1116/1.574062]   DOI
9 M. Wittmer, J. Vac. Sci. Technol., A, 3, 1797 (1985). [DOI: https://doi.org/10.1116/1.573382]   DOI
10 C. Liu, Z. Liu, and B. Wang, Ceram. Int., 44, 3430 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2017.11.142]   DOI
11 E. Marin, A. Lanzutti, and L. Fedrizzi, Tribol. Ind., 35, 208 (2013).
12 Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. Kim, and C. W. Chung, Jpn. J. Appl. Phys., 47, 6896 (2008). [DOI: https://doi.org/10.1143/JJAP.47.6896]   DOI
13 E. K. Tentardini, E. Blando, and R. Hubler, Nucl. Instrum. Methods Phys. Res., Sect. B, 175, 626 (2001). [DOI: https://doi.org/10.1016/S0168-583X(00)00652-2]   DOI
14 G. Lemperiere and J. M. Poitevin, Thin solid Films, 111, 339 (1984). [DOI: https://doi.org/10.1016/0040-6090(84)90326-2]   DOI
15 M. K. Lee, H. S. Kang, W. W. Kim, J. S. Kim, and W. J. Lee, Korean J. Mater. Res., 12, 2393 (1997). [DOI: https://doi.org/10.1557/JMR.1997.0317]   DOI
16 H. C. Barshilia and K. S. Rajam, Bull. Mater. Sci., 30, 607 (2007). [DOI: https://doi.org/10.1007/s12034-007-0096-4]   DOI
17 L. H. Lee, Fundamentals of Adhesion (2nd Edition, Plenum Press, New York, 1992) p. 6.