• Title/Summary/Keyword: Maximum Entropy Model

Search Result 135, Processing Time 0.025 seconds

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Selecting Suitable Riparian Wildlife Passage Locations for Water Deer based on MaxEnt Model and Wildlife Crossing Analysis (MaxEnt 모형과 고라니의 이동행태를 고려한 수변지역 이동통로 적지선정)

  • Jeong, Seung Gyu;Lee, Hwa Su;Park, Jong Hoon;Lee, Dong Kun;Park, Chong Hwa;Seo, Chang Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • Stream restoration projects have become threats to riparian ecosystem in Rep. of korea. Riparian wildlife becomes isolated and the animals are often experience difficulties in crossing riparian corridors. The purposes of this study is to select suitable wildlife passages for wild animals crossing riparian corridors. Maximum entropy model and snow tracking data on embankment in winter seasons were used to develop species distribution models to select suitable wildlife passages for water deer. The analysis suggests the following. Firstly, most significant factors for water deer's habitat in area nearby riparian area are shown to distance to water, age-class, land cover, slope, aspect, digital elevation model, tree density, and distance to road. For the riparian area, significant factors are shown to be land cover, size of riparian area, distance to tributary, and distance to built-up. Secondly, the suitable wildlife passages are recommended to reflect areas of high suitability with Maximum Entropy model in riparian areas and the surrounding areas and moving passages. The selected suitable areas are shown to be areas with low connectivity due to roads and vertical levee although typical habitats for water deer are forest, grassland, and farmland. In addition, the analysis of traces on snow suggests that the water deer make a detour around the artificial structures. In addition, the water deer are shown to make a detour around the fences of roads and embankment around farmland. Lastly, the water deer prefer habitats around riparian areas following tributaries. The method used in this study is expected to provide cost-efficient and functional analysis in selecting suitable areas.

A probabilistic information retrieval model by document ranking using term dependencies (용어간 종속성을 이용한 문서 순위 매기기에 의한 확률적 정보 검색)

  • You, Hyun-Jo;Lee, Jung-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.763-782
    • /
    • 2019
  • This paper proposes a probabilistic document ranking model incorporating term dependencies. Document ranking is a fundamental information retrieval task. The task is to sort documents in a collection according to the relevance to the user query (Qin et al., Information Retrieval Journal, 13, 346-374, 2010). A probabilistic model is a model for computing the conditional probability of the relevance of each document given query. Most of the widely used models assume the term independence because it is challenging to compute the joint probabilities of multiple terms. Words in natural language texts are obviously highly correlated. In this paper, we assume a multinomial distribution model to calculate the relevance probability of a document by considering the dependency structure of words, and propose an information retrieval model to rank a document by estimating the probability with the maximum entropy method. The results of the ranking simulation experiment in various multinomial situations show better retrieval results than a model that assumes the independence of words. The results of document ranking experiments using real-world datasets LETOR OHSUMED also show better retrieval results.

Which country's end devices are most sharing vulnerabilities in East Asia? (거시적인 관점에서 바라본 취약점 공유 정도를 측정하는 방법에 대한 연구)

  • Kim, Kwangwon;Won, Yoon Ji
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1281-1291
    • /
    • 2015
  • Compared to the past, people can control end devices via open channel. Although this open channel provides convenience to users, it frequently turns into a security hole. In this paper, we propose a new human-centered security risk analysis method that puts weight on the relationship between end devices. The measure derives from the concept of entropy rate, which is known as the uncertainty per a node in a network. As there are some limitations to use entropy rate as a measure in comparing different size of networks, we divide the entropy rate of a network by the maximum entropy rate of the network. Also, we show how to avoid the violation of irreducible, which is a precondition of the entropy rate of a random walk on a graph.

Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model (MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석)

  • Cho, NangHyun;Kim, Eun-Sook;Lee, Bora;Lim, Jong-Hwan;Kang, Sinkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2020
  • Decline of pine forests happens in Korea due to various disturbances such as insect pests, forest fires and extreme climate, which may further continue with ongoing climate change. For conserving and reestablishing pine forests, understanding climate-induced future shifts of pine tree distribution is a critical concern. This study predicts future geographical distribution of Pinus densiflora, using Maximum Entropy Model (MaxEnt). Input data of the model are locations of pine tree stands and their environmental variables such as climate were prepared for the model inputs. Alternative future projections for P. densiflora distribution were conducted with RCP 4.5 and RCP 8.5 climate change scenarios. As results, the future distribution of P. densiflora steadily decreased under both scenarios. In the case of RCP 8.5, the areal reductions amounted to 11.1% and 18.7% in 2050s and 2070s, respectively. In 2070s, P. densiflora mainly remained in Kangwon and Gyeongsang Provinces. Changes in temperature seasonality and warming winter temperature contributed primarily for the decline of P. densiflora., in which altitude also exerted a critical role in determining its future distribution geographic vulnerability. The results of this study highlighted the temporal and spatial contexts of P. densiflora decline in Korea that provides useful ecological information for developing sound management practices of pine forests.

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Word Sense Similarity Clustering Based on Vector Space Model and HAL (벡터 공간 모델과 HAL에 기초한 단어 의미 유사성 군집)

  • Kim, Dong-Sung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.3
    • /
    • pp.295-322
    • /
    • 2012
  • In this paper, we cluster similar word senses applying vector space model and HAL (Hyperspace Analog to Language). HAL measures corelation among words through a certain size of context (Lund and Burgess 1996). The similarity measurement between a word pair is cosine similarity based on the vector space model, which reduces distortion of space between high frequency words and low frequency words (Salton et al. 1975, Widdows 2004). We use PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) to reduce a large amount of dimensions caused by similarity matrix. For sense similarity clustering, we adopt supervised and non-supervised learning methods. For non-supervised method, we use clustering. For supervised method, we use SVM (Support Vector Machine), Naive Bayes Classifier, and Maximum Entropy Method.

  • PDF

Chinese Prosody Generation Based on C-ToBI Representation for Text-to-Speech (음성합성을 위한 C-ToBI기반의 중국어 운율 경계와 F0 contour 생성)

  • Kim, Seung-Won;Zheng, Yu;Lee, Gary-Geunbae;Kim, Byeong-Chang
    • MALSORI
    • /
    • no.53
    • /
    • pp.75-92
    • /
    • 2005
  • Prosody Generation Based on C-ToBI Representation for Text-to-SpeechSeungwon Kim, Yu Zheng, Gary Geunbae Lee, Byeongchang KimProsody modeling is critical in developing text-to-speech (TTS) systems where speech synthesis is used to automatically generate natural speech. In this paper, we present a prosody generation architecture based on Chinese Tone and Break Index (C-ToBI) representation. ToBI is a multi-tier representation system based on linguistic knowledge to transcribe events in an utterance. The TTS system which adopts ToBI as an intermediate representation is known to exhibit higher flexibility, modularity and domain/task portability compared with the direct prosody generation TTS systems. However, the cost of corpus preparation is very expensive for practical-level performance because the ToBI labeled corpus has been manually constructed by many prosody experts and normally requires a large amount of data for accurate statistical prosody modeling. This paper proposes a new method which transcribes the C-ToBI labels automatically in Chinese speech. We model Chinese prosody generation as a classification problem and apply conditional Maximum Entropy (ME) classification to this problem. We empirically verify the usefulness of various natural language and phonology features to make well-integrated features for ME framework.

  • PDF

Learning Text Chunking Using Maximum Entropy Models (최대 엔트로피 모델을 이용한 텍스트 단위화 학습)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.130-137
    • /
    • 2001
  • 최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.

  • PDF