• Title/Summary/Keyword: Maximal Ratio Combining

Search Result 105, Processing Time 0.023 seconds

performance Analysis or the IMT-2000 system receiver with Array Antenna and MRC-Diversity (Array 안테나와 MRC-Diversity를 채용한 IMT-2000 시스템의 수신성능 분석)

  • 왕용철;강희조;우병훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.256-260
    • /
    • 2001
  • 본 논문은 광대역 무선통신환경에서 3GPP(3rd Generation Partnership Project)에 기반한 비동기 IMT-2000 시스템의 송수신 시스템을 구성하여 기지국의 수신성능을 분석하였다. 이동국과 기지국간의 Uplink 채널 환경을 고려하였으며, 기지국의 수신신호는 다중경로 페이딩(Multi-path Fading)과 다중접속간섭(Mult Access Interference : MAI)의 영향으로 성능일 열화된다. 이에 대한 대책으로 Array 안테나를 채용하였을 경우와 MRC-Diversity(Maximal Combining Diversity)를 채용하였을 경우의 수신성능을 동일한 환경에서 비교 분석하였으며, 각각의 시스템에 간섭제거기를 직렬로 비교분석하였다. 본 논문에서 적용한 Array 안테나는 수신 신호의 방향에 따라 적응적으로 추적하여 수신 SNR(Singnal-to-Noise power Ratio)을 최대로 형성하여 시스템의 성능을 개선하는 기법이며, 안테나의 방향성(Directivity :D=2.67)을 이용하는 3-element Array 안테나를 채용하였다. 최대비 합성 다이버시티 기법은 다이버시티 기법 중 수신효율이 가장 좋으며 가지수(L=2)를 함수를 사용하였다. 성능분석 결과 다중경로 페이딩과 다중접속간섭 환경에서 최대비 합성 다이버시티 기법이 Array 안테나보다 수신효율이 우수하였다.

  • PDF

Secrecy Outage Probability of AF Relay Transmission with MRC/TAS in Presence of Eavesdropper

  • Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.620-625
    • /
    • 2016
  • In this paper, we offer the secrecy outage probability of the amplify-and-forward (AF) transmission, which consists of one source, one destination, one relay, and one passive eavesdropper. Particularly, we consider that the relay is equipped with multiple antennas while other terminals is utilized with single antenna and apply diversity techniques (for both the reception and the transmission) at the relay to achieve gains in a secrecy outage performance. Additionally, we analyze the exact secrecy outage probability of the proposed systems in a one-integral form. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

Performance analysis of asynchronous DS-CDMA system with MRC diversity in fading channels

  • Seo, Seok;Lee, Chan-kil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1237-1243
    • /
    • 2004
  • This paper presents and analyses the closed-form expression of the average bit error rate (BER) for an asynchronous direct-sequence code division multiple access (DS-CDMA) system with coherent binary phase shift keying (BPSK) modulation scheme using a maximal ratio combining (MRC) diversity over a Rician fading channel. In addition to the average BER, outage probability, and user capacity of system are estimated as performance measures. The results are general enough so that it includes Rayleigh fading and nonfading channel with zero and infinite Rician factor, respectively, as special cases. The effects of various channel models, processing gains, and diversity orders on the system performances are also considered for the typical multipath delay profiles characterized by Rician fading channel.

Linear Diversity Analysis for M-ary Square Quadrature Amplitude Modulation over Nakagami Fading Channels

  • Yoon, Dong-Weon;Chang, Dae-Ig;Kim, Nae-Soo;Woo, Hoon-Shik
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.231-237
    • /
    • 2003
  • We derive and analyze the exact closed-form expression for the average bit error probability (BEP) of M-ary square quadrature amplitude modulation (QAM) for diversity reception in frequency-nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M-ary square QAM with an MRC diversity combiner for various cases of practical interest.

  • PDF

Performance Enhancement by Interference Cancellation Scheme in Transmit Diversity using STBC over Time Selective Fading Channel (Time Selective Fading 채널 환경에서 STBC를 이용하는 송신 다이버시티에서 간섭제거기법에 의한 성능 개선)

  • Kim, Jang-Wook;Jin, Yang-Hee;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • Transmit diversity using STBC(Space Time Block Code) provides the same diversity gain as MRRC(Maximal Ratio Receiver Combining), when the fading channel is constant across two consecutive symbols. But, when the channel condition is changed for the two consecutive symbols, the transmit diversity using STBC does not offer good performance due to the large doppler shift. In this paper, we have proposed a interference cancellation scheme for performance enhancement in transmit diversity using STBC over time selective fading channel. Simulation results for various doppler shift rates are presented for the transmit diversity using the proposed scheme.

  • PDF

Error Rate Performance of FH / MFSK Signal with space Diversity Techniques in the Environments of Interference and Rayleigh Fading (공간 다이버시티 기법을 이용하는 FH/MFSK 신호의 간섭과 레일리 페이딩 환경하에서의 오류 확률 특성)

  • Lee, Moon-Seung;Leem, Kill-Yong;Lee, Jin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.3-13
    • /
    • 1994
  • In the environments with interference and Rayleigh fading the bit error probability equation of FH / MFSK signal has been derived and the error rate has been evaluated. And the results are shown in graphs and discussed. The degree of improvement of error rate performance has been found out in space diversity technique. From the results, we know that maximal ratio combining is very effective for Rayleigh fading and interference.

  • PDF

Performance Analysis of 32-QAPM System with MRC Diversity in Rician Fading Channel

  • Chun, Jae Young;Kim, Eon Gon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.227-232
    • /
    • 2016
  • In this study, the performance of a 32-quadrature amplitude position modulation (QAPM) system is analyzed under a Rician fading channel condition when the maximal ratio combining (MRC) diversity technique is used in the receiver. The fading channel is modeled as a frequency non-selective slow Rician fading channel corrupted by additive white Gaussian noise (AWGN). QAPM is available to improve BER performance without amplifying transmit power, and MRC diversity makes the performance improvement of QAPM system even bigger by intentionally maximizing SNR. Error performances are shown for the 32-QAPM system and a 32-phase silence shift keying (PSSK) system in order to examine the effects of fading severity, for various values of the Rician parameter, K. The dependence of error rates on MRC diversity is also analyzed. The simulation results show that the BER performance of the 32-QAPM system is better than that of the 32-PSSK system under the above mentioned conditions.

Suppression of IEEE 802.11a Interference in TH-UWB Systems Using Singular Value Decomposition in Wireless Multipath Channels

  • Xu, Shaoyi;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Narrow-band interference (NBI) from the coexisting narrow-band services affects the performance of ultra wideband (UWB) systems considerably due to the high power of these narrow-band signals with respect to the UWB signals. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals may interfere with UWB systems significantly. In this paper, we suggest a novel NBI suppression technique based on singular value decomposition (SVD) algorithm in time hopping UWB (TH-UWB) systems. SVD is used to approximate the interference which then is subtracted from the received signals. The algorithm precision and closed-form bit error rate (BER) expression are derived in the wireless multipath channel. Comparing with the conventional suppression methods such as a notch filter and a RAKE receiver, the proposed method is simple and robust and especially suitable for UWB systems.

Performance Analysis of Arbitrary Rectangular QAM over Nakagami Fading Channels with MRC in the Presence of Co-channel Interference (동일 채널 간섭이 존재하는 나카가미 채널에서 임의 직사각 QAM 신호의 MRC 다이버시티 수신 성능)

  • 현광민;윤동원;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.257-265
    • /
    • 2004
  • General closed-form expression is derived and analyzed for the exact bit error rate (BER) performance of the arbitrary rectangular Gray coded QAM signal in conjunction with maximal-ratio combining (MRC) diversity on frequency non-selective slow m-distributed Nakagami fading channel in the presence of co-channel interference. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The new expressions presented here are suitable for evaluating various cases of practical interest on wireless communication channels.

Potential diversity and chip-spreading orthogonal code division modulation system (포텐셜 다이버시티와 칩확산 직교부호분할변조 방식)

  • 김병훈;이병기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1590-1598
    • /
    • 1997
  • The paper first introduces the new concept of potential diversity and signal decomposability, which establish a foundaton to generalize the existing concepts of path and frequency diversities. Then it presents a new DS/CDMA system called chip-spreading OCDM system, which is an embodiment of the petential diversity concept that combines the path diversity of the DS/CDMA system and the frequency diversity of the OFDM/CDMA system. In the chip-spreading OCDM system the chip sequences in each symbol interval are first converted into aralled streams, which then simultaneously modulate different orthogonal Walsh basis functions. In the receiver, the received signal is matched to each extended basis-function which is the union of the transmitter basis-functions and their delayed replicas, and the matched-filtered chip samples are combined together after individual channel compensation. The conventional DS/CDMA system using the maximal ratio combining. In addition, it effectively resolves the high PAR and high sensitivity to frequency offset problems which are critical in multi-carrier systems.

  • PDF