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We derive and analyze the exact closed-form expression 
for the average bit error probability (BEP) of M-ary 
square quadrature amplitude modulation (QAM) for 
diversity reception in frequency-nonselective Nakagami 
fading. A maximal ratio combining (MRC) diversity 
technique with independent or correlated fading cases are 
considered. Numerical results demonstrate error 
performance improvement with the use of MRC diversity 
reception. The presented new expressions offer a 
convenient way to evaluate the performance of M-ary 
square QAM with an MRC diversity combiner for 
various cases of practical interest. 
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I. Introduction 

Mobile radio systems require spectrally efficient modulation 
schemes because the available radio spectrum is limited. With 
the increasing demands of various mobile communication 
services, transmissions at higher rates will be required in band-
limited mobile radio systems. Quadrature amplitude 
modulation (QAM) is a very attractive technique to achieve 
such a high rate transmission over wireless links without 
increasing the bandwidth [1]. A great deal of recent attention 
has been devoted to the study of bit error probability (BEP) for 
M-ary square QAM [2]-[5], and an exact and general closed-
form expression of the BEP for M-ary square QAM with 
arbitrary constellation size in additive white Gaussian noise 
(AWGN) has recently been developed in [5]. 

For many digital mobile communication systems, the 
channel is subject to fading caused by multipath propagation. 
The Nakagami m-distribution is a versatile statistical model, 
which can accurately fit experimental data for many physical 
propagation channels. When the fading follows the Nakagami 
statistics, the probability density function (pdf) of the 
instantaneous signal-to-noise ratio (SNR) γ  of a received 
signal is [6] 
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where γ  is the average SNR, ( )⋅Γ  is the gamma function 
[7], and m is the fading severity parameter (m≥0.5). The m-
distribution includes the half-Gaussian (m=0.5), Rayleigh 
(m=1), and a non-fading (m=∞) as special cases, and it can be 
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made to approximate other exact or experimentally derived 
distributions (i.e., Rician or log-normal) by judicious choice of 
parameters. 

Diversity receptions are effective techniques for combating 
the detrimental effects of channel fading and have been 
discussed extensively in recent years to improve the 
communication system performance in multi-path fading 
channels. Diversity techniques for improving system 
performance without incurring a substantial penalty in terms of 
implementation complexity or cost are of practical interest. For 
coherent communication systems, one of the most prevalent 
space diversity techniques is maximal-ratio combining (MRC). 
The MRC technique, which provides the highest average 
output SNR, gives the best performance [8]. 

Many earlier studies on MRC diversity performance derived 
the error rate performance for MRC diversity in Nakagami 
fading [9]-[11]. Aalo et al. [9] derived a symbol error 
probability (SEP) for MRC reception of MPSK. Annamalai et 
al. [10] presented symbol error probabilities for binary and M-
ary signals with L-th order MRC and selection combining (SC) 
diversity receptions. In [11], Aalo derived bit error probabilities 
of phase shift keying (PSK) and frequency shift keying (FSK) 
for MRC reception in a correlated Nakagami fading. However, 
the exact closed-form BER expression of M-ary square QAM 
with MRC diversity receptions in Nakagami fading channels 
has not yet been derived. 

Using our previous work [5], we derive and analyze the 
exact closed-form expression of BEP for M-ary square QAM 
signals with L-branch MRC diversity reception affected by a 
frequency non-selective slow Nakagami fading and embedded 
in AWGN with the results of [11]. Generally, the BEP gives a 
more meaningful performance measure than SEP for 
comparison among different modulation schemes. MRC 
diversity techniques with identical and independent, 
nonidentical and independent, and identical but correlated 
Nakagami fading are considered. 

The rest of this paper is organized as follows: Section 
II describes the system model used throughout this paper. The 
closed-form BEP expressions of M-ary square QAM for MRC 
diversity with independent or correlated Nakagami fading 
cases are presented in section III. In section IV numerical 
results are presented. Finally, we conclude with a brief 
summary of our work. 

II. Preliminaries 

The modulated square M-ary QAM signal is assumed to be 
transmitted over a frequency non-selective slow Nakagami fading 
channel. The conditional probability of a bit error for an M-ary 

square QAM signal in an AWGN environment is given by [5] 
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where )(kPb  is the probability that the k-th bit of the in-phase 
components and the quadrature components are in error in 
terms of SNR, 
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( )⋅F  is the floor function; 
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The average bit error probability, ,bP  for diversity 
reception in a fading channel is obtained by 
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where ( )γePb  is the bit error probability in AWGN and 
( )γf D  is the probability density function of the SNR at the 

output of the diversity combiner. 
By substituting (2) into (4), bP  can now be expressed as 

follows: 
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where 
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Equation (5) shows that bP  is solely characterized by 
( )Mi,Ψ , so we will investigate ( )Mi,Ψ . 
Generally, for L-th order MRC diversity reception, we 

assume that each diversity channel has independent Nakagami 
fading, and that the prefect channel estimation is available at 
the receiver. Under this assumption, the pdf of the received 
SNR of an i-th single diversity branch is [12] 
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where im  and iγ  are the fading index and the average SNR 
on the i-th branch, respectively. 
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III. Bit Error Probability of M-ary Square QAM 

1. Independent and Identical Fading 

If the diversity channels are sufficiently separated, the 
assumption of statistical independence between the diversity 
branches is valid. For L-branch MRC in a Nakagami fading 
channel, where iim γ/  is the same for all diversity branches, 
the pdf of the SNR at the output of the MRC diversity receiver 
in Nakagami-m fading becomes [12] 
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where Tm  is the total fading index, ∑
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( )Mi,Ψ  can be obtained using the following identity [13]. 
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where a, b, and c are positive real, and ( )⋅12 F  is the 
hypergeometric function and is given by [7] 
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Thus ( )Mi,Ψ  is expressed as follows: 
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Note that ( )Mi,Ψ  for MRC diversity reception under 
Rayleigh fading is obtained simply by substituting 1 for im  
(i.e., LmT =  in (11)). In addition, when L=1, mmm iT == , 
and γγγ == iT , ( )Mi,Ψ  in (11) is reduced to the BEP 
expression for a Nakagami-m fading channel without a 
diversity combiner. When M=4, (5) using (11) reduces to the 
well-known BEP of QPSK for MRC in Nakagami fading. 

If mmi =  and γγ =i , then mLmT = and LT γγ = . In 
this case (8) and (11) respectively become 
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2. Independent and Nonidentical Fading 

For L-branch MRC in a Nakagami fading channel, where 

iim γ/  is distinct across the branches and im  is integer, the 
pdf of the SNR in Nakagami fading becomes [12] 
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where 
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Following steps similar to those used above, ),( MiΨ  
becomes 
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3. Correlated Fading 

If the diversity branches are very closely spaced, the signals 
on different branches are no longer independent. Here, we 
consider the exact BEP performance of an MRC for the 
detection of square QAM signals in a correlated Nakagami 
fading environment where the diversity branches are 
correlated. We assume that the fading parameters in each 
diversity branch are identical. The two correlation models 
considered are the “constant correlation model” and the 
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“exponential correlation model.” 

A. Constant Correlation 

For the constant correlation model, the correlation coefficient 
between any two branches is constant (i.e., ρρ ij = , where i, j 
= 1, 2,…, L and 10 ≤≤ ρ ).  In this case, the pdf of the SNR 
is given by [11] 
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where ρ is a correlation coefficient and .1 Lρρλ +−=  
When 0=ρ , (18) reduces to (12) and ),( MiΨ  becomes 
(13). For 0>ρ , ),( MiΨ  can be obtained by using the 
following identity [11], [14] 
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where )(2 ⋅F  is Appell’s hypergeometric function and given 
by [14] 
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B. Exponential Correlation 

For the exponential correlation model, the correlation 
coefficient between any two branches decreases exponentially 
as the separation between them increases (i.e., ji

ij ρρ −= ). In 
this case the pdf of the SNR can be very closely 

approximated by [11] 
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Following steps similar to those used above and using the 
following identities [11], 
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),( MiΨ  can be expressed as follows: 
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Note that when ,0=ρ  (25) reduces to (13). 

IV. Numerical Results 

By using the closed-form expressions in (5), (11), (16), and 
(25), we obtained the numerical results of the average BEP 
versus the average SNR for arbitrary square M-QAM with the 
modulation level M, the order of diversity L, and fading 
severity parameter m. Figure 1 shows the average BEP for an 
independent and identical fading. A close inspection of these 
numerical results reveals that a significant improvement in 
BEP performance is achieved as the order of L increases from 
1 to 2 and the improvement in BEP performance is somewhat 
retained as the order of L increases from 2 to higher orders. For 
example, at a BEP of 10-3, there is a 7.5 dB diversity gain using 
L=4 over L=2, and as much as 13 dB diversity gain using L=2 
over L=1 for 4-QAM. This confirmed that the BEP 
performance improvement was somewhat retained when the 
additional diversity branch was employed to an existing higher 
number of diversity branches. 

Figure 2 shows the average BEP for an independent and 
nonidentical fading, where im  is distinct across the branches. 
For example, for L=4, ,11 =m ,22 =m ,33 =m  and 44 =m  
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are assumed. As Figs. 1 and 2 show, an additional 4-5 dB of 
SNR is required to transmit an extra bit per dimension to 
maintain an average BEP of 10-3. 

Figure 3 shows the BEP performances of 16-QAM for the 
exponential correlation model in Nakagami fading for various 
 

 

Fig. 1. Average BEP as a function of SNR for M-QAM with 
MRC diversity reception in an independent and 
identical Nakagami fading channel. 
(L=1,2,4, M=4, 16, 64 and m=1) 
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Fig. 2. Average BEP as a function of SNR for M-QAM with 
MRC diversity reception in an independent and 
nonidentical Nakagami fading channel. 
(M=4, 16, 64, L=1 for m=1, L=2 for m=1,2 and L=4 for
m=1,2,3,4) 
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values of correlation coefficient ρ and diversity order L with 
m=1. Figure 3 reveals that the exponential correlation ( 9.0=ρ ) 
resulted in as much as 9.5, 10.5, and 11 dB loss over the 
independent case ( 0=ρ ) for L=2, 3, and 4, respectively, at a 
BEP of 10-3. However, the improvement in BEP performance 
was achieved as the order of L increased even though the 
diversity branches were correlated. For example, there was a 
2.5 dB diversity gain using L=4 ( 5.0=ρ ) over L =2 ( 0=ρ ). 
The effect of the branch correlation on the MRC diversity gain 
for the exponential correlation model at a BEP of 10-3 for 16-
QAM over L=1 is shown in Table 1. 
 

 

Fig. 3. Average BEP as a function of SNR for 16-QAM with 
MRC diversity reception in a Nakagami fading channel
with exponential correlation. 
(L=2,3,4, ρ=0, 0.5, 0.9, m=1) 
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Table 1. Diversity gain at a BEP of 10-3 for 16-QAM with MRC 
diversity reception in Nakagami fading channels with 
exponential correlation. 

ρ m=1 m=2 m=4 
 L=2 L=4 L=2 L=4 L=2 L=4 

0 12.6 dB 19.4 dB 6.9 dB 11.5 dB 4.7 dB 8.5 dB
0.5 8 dB 15.3 dB 5.2 dB 8.7 dB 3.8 dB 7.6 dB

0.9 4 dB 8.6 dB 3.5 dB 7.1 dB 3.2 dB 6.4 dB

  

V. Conclusions 
In this paper, exact closed-form expressions for BEP of L-th 

order MRC diversity for M-ary square QAM signals have been 
derived and analyzed in identical and independent, 
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nonidentical and independent, and identical but correlated 
Nakagami-m fading channels. The two correlation models 
considered were the constant correlation model and the 
exponential correlation model. For the particular case of m=1, 
the derived results easily led to the exact BEP for QAM with 
MRC diversity in Rayleigh fading channels. It is worth noting 
that for L =1, they became BEP performance in Nakagami 
fading without diversity. Since derived expressions are general, 
the exact BEP expression for various square QAM signal 
formats can be easily obtained by substituting parameters of 
interest, e.g., the signal constellation level M, fading parameter 
m or the order of diversity L. This offers a convenient way to 
evaluate the performance of arbitrary square QAM with an 
MRC diversity combiner for various cases of practical interest. 
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