• Title/Summary/Keyword: Maxima

Search Result 598, Processing Time 0.036 seconds

Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet (볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구)

  • 최형철;이세균;이상훈;임경빈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

Independence and Homogeneity Tests of the Annual Maxima Data used to Estimate the Design Wave Height (설계파고 추정에 사용한 연 최대 자료의 독립 및 분포 동질 검정)

  • Cho, Hong Yeon;Jeong, Weon Mu;Back, Jong Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.26-38
    • /
    • 2020
  • A statistical test was carried out on the IID (Independently and Identically Distributed) assumption of the AM (Annual Maxima) data used to estimate the design wave height. The test was divided into independence (randomness) test and homogeneity test, and each test was conducted on AM data of 210 and 310 stations in coastal and inner coastal grids in typhoon and non-typhoon (monsoon) conditions. As a result of the independence test, the rejection ratios of the test are in the range of 1.8~5.3% and 1.4~6.0% for the non-typhoon and typhoon data sets, respectively. On the other hand, in the distribution difference test of typhoon data and nontyphoon data, the same distribution hypothesis was found to be rejected in the range of 47~79% according to the test method for both coastal grid and inner coastal grid. Therefore, in estimating design wave height by extreme value analysis, the estimation process by dividing the typhoon and non-typhoon data is appropriate.

Extreme Value Analysis of Statistically Independent Stochastic Variables

  • Choi, Yongho;Yeon, Seong Mo;Kim, Hyunjoe;Lee, Dongyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.222-228
    • /
    • 2019
  • An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.

Physicochemical and sensory properties of Yakhobak (Cucurbita maxima subsp. maxima) paste under different high pressure heating conditions (가열조건에 따른 약호박(Cucurbita maxima subsp. maxima) 페이스트의 이화학적 관능적 품질특성)

  • Park, Bo-Ram;Choi, Su-Jeong;Kim, Na-Jeong;Han, Gui-Jung;Kim, Ha-Yun
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.44-51
    • /
    • 2017
  • For the production of Yakhobak (Cucurbita maxima subsp. maxima) paste under various heating conditions, we steamed Yakhobak for roughly 20 min, followed by heating under high pressure treatment for 0 min (HHP0), 20 min (HHP20), 40 min (HHP40), and 60 min (HHP60). The physicochemical and sensory characteristics were subsequently investigated. Generally, no significant difference was observed in organic acid content and sensory characteristics score between Yakhobak paste treated with and without high-pressure heating. However, there was a significant difference in color value, soluble solids, and free sugar content. The L value for color of the group HHP0, untreated control Yakhobak paste (no high-pressure heating), decreased as time increased from 20 min to 60 min, with L values of 44.33, 44.25, and 42.86, respectively. The b value for the color of Yakhobak paste also decreased, showing a significant difference. Soluble solids and free sugar (fructose, glucose, sucrose) contents of the high-pressure heat-treated groups HHP20, HHP40, and HHP60 decreased compared with untreated group HHP0. Organic acid composition of Yakhobak paste included citric acid, malic acid, and fumaric acid, and the major organic acid was malic acid. Sensory score of HHP40 was the highest among all experimental groups in terms of overall preference, but there was no significant difference.

An Analysis of Near-infrared Light Curves of δ Scuti Variable BO Lyn (δ Scuti형 변광성 BO Lyn의 근적외선 광도곡선 분석)

  • Lim, Ji-Hye;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.389-397
    • /
    • 2016
  • In order to investigate the light curve difference in visual and infrared wavelength of ${\delta}$ Scuti variable Bo Lyn, observations were performed using BOAO 1.8m reflecting telescope and an infrared detector, KASINICS, with J, H, and Ks filters. Infrared light curves of total 7 nights were obtained between March and April in 2011, and those were compared to the V-filter light curve to examine the differences in period, time of maximum light, amplitude, and shape. From the periodic analysis of infrared light curve, a single frequency of $f_1=10.712cycle/day$, $P=0.09335{\pm}0.00002days$ was obtained, and there was no difference in the period along different wavelengths. In the infrared light curve, a frequency of $2f_1$ was detected. This frequency well explains the asymmetric shape of light curve, one of the characteristics of high-amplitude ${\delta}$ Scuti variables. We compared the locations of the measured infrared maxima and the predicted maxima of V-filter, finding that the times of maxima were delayed about 0.3 phase at infrared wavelengths. Amplitude ratios were adopted to be ${\Delta}J/{\Delta}V=0.328$, ${\Delta}H/{\Delta}V=0.216$, and ${\Delta}Ks/{\Delta}V=0.211$, with the range of variation being smaller at longer wavelengths. It seems that the differences in the times of maxima and amplitude occurred because the changes in brightness of a pulsating variable star are mainly caused by the change in temperature.

Usefulness and Limitations of Extreme Value Theory VAR model : The Korean Stock Market (극한치이론을 이용한 VAR 추정치의 유용성과 한계 - 우리나라 주식시장을 중심으로 -)

  • Kim, Kyu-Hyong;Lee, Joon-Haeng
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.119-146
    • /
    • 2005
  • This study applies extreme value theory to get extreme value-VAR for Korean Stock market and showed the usefulness of the approach. Block maxima model and POT model were used as extreme value models and tested which model was more appropriate through back testing. It was shown that the block maxima model was unstable as the variation of the estimate was very large depending on the confidence level and the magnitude of the estimates depended largely on the block size. This shows that block maxima model was not appropriate for Korean Stock market. On the other hand POT model was relatively stable even though extreme value VAR depended on the selection of the critical value. Back test also showed VAR showed a better result than delta VAR above 97.5% confidence level. POT model performs better the higher the confidence level, which suggests that POT model is useful as a risk management tool especially for VAR estimates with a confidence level higher than 99%. This study picks up the right tail and left tail of the return distribution and estimates the EVT-VAR for each, which reflects the asymmetry of the return distribution of the Korean Stock market.

  • PDF

Automatic Extraction of Tree Information in Forest Areas Using Local Maxima Based on Aerial LiDAR (항공 LiDAR 기반 Local Maxima를 이용한 산림지역 수목정보 추출 자동화)

  • In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1155-1164
    • /
    • 2023
  • Currently, the National Forest Inventory (NFI) collects tree information by human, so the range and time of the survey are limited. Research is actively being conducted to extract tree information from a large area using aerial Light Detection And Ranging (LiDAR) and aerial photographs, but it does not reflect the characteristics of forest areas in Korea because it is conducted in areas with wide tree spacing or evenly spaced trees. Therefore, this study proposed a methodology for generating Digital Surface Model (DSM), Digital Elevation Model (DEM), and Canopy Height Model (CHM) images using aerial LiDAR, extracting the tree height through the local Maxima, and calculating the Diameter at Breath Height (DBH) through the DBH-tree height formula. The detection accuracy of trees extracted through the proposed methodology was 88.46%, 86.14%, and 84.31%, respectively, and the Root Mean Squared Error (RMSE) of DBH calculated based on the tree height formula was around 5cm, confirming the possibility of using the proposed methodology. It is believed that if standardized research on various types of forests is conducted in the future, the scope of automation application of the manual national forest resource survey can be expanded.

Wavelet Generation and It's Application in Gravity Potential (중력 포텐셜에서의 웨이브렛 생성과 응용)

  • Kim, Sam-Tai;Jin, Hong-Sung;Rim, Hyoung-Rae
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • A wavelet method is applied to the analysis of gravity potential. One scaling function is proposed to generate wavelet. The scaling function is shown to be replaced to the Green’s function in gravity potential. The upward continuation can be expressed as a wavelet transform i.e. convolution with the scaling function. The scaling factor indicates the height variation. The multiscale edge detection is carried by connecting the local maxima of the wavelet transform at scales. The multiscale edge represents discontinuity of the geological structure. The multiscale edge method is applied to gravity data from Masan and Changwon.