DOI QR코드

DOI QR Code

Independence and Homogeneity Tests of the Annual Maxima Data used to Estimate the Design Wave Height

설계파고 추정에 사용한 연 최대 자료의 독립 및 분포 동질 검정

  • Cho, Hong Yeon (Marine Bigdata Center, Korea Institute of Ocean Science and Technology, University of Science and Technology) ;
  • Jeong, Weon Mu (Maritime ICT R&D Center, Korea Institute of Ocean Science and Technology) ;
  • Back, Jong Dai (Coastal and Ocean Technology Research Institute)
  • 조홍연 (한국해양과학기술원 해양빅데이터센터) ;
  • 정원무 (한국해양과학기술원 해양 ICT 융합연구센터) ;
  • 백종대 ((주)해안해양기술)
  • Received : 2020.01.07
  • Accepted : 2020.02.05
  • Published : 2020.02.28

Abstract

A statistical test was carried out on the IID (Independently and Identically Distributed) assumption of the AM (Annual Maxima) data used to estimate the design wave height. The test was divided into independence (randomness) test and homogeneity test, and each test was conducted on AM data of 210 and 310 stations in coastal and inner coastal grids in typhoon and non-typhoon (monsoon) conditions. As a result of the independence test, the rejection ratios of the test are in the range of 1.8~5.3% and 1.4~6.0% for the non-typhoon and typhoon data sets, respectively. On the other hand, in the distribution difference test of typhoon data and nontyphoon data, the same distribution hypothesis was found to be rejected in the range of 47~79% according to the test method for both coastal grid and inner coastal grid. Therefore, in estimating design wave height by extreme value analysis, the estimation process by dividing the typhoon and non-typhoon data is appropriate.

설계파고 추정에 사용한 AM 자료의 IID 가정에 대한 검정을 수행하였다. 검정은 독립 검정, 분포 차이 검정으로 구분하고, 각각의 검정은 태풍, 비태풍 조건에서의 연안 격자, 연안 내부격자 각각 210개, 310개 지점의 AM 자료 세트를 대상으로 수행하였다. 독립 검정 결과, 비태풍, 태풍 자료 세트에 대하여 각각 1.8~5.3%, 1.4~6.0% 범위의 기각 비율을 보여, 대부분의 자료가 독립 검정을 만족하는 것으로 파악되었다. 한편 태풍 자료와 비태풍 자료의 분포 차이 검정은 연안 격자와 연안 내부격자 모두 검정 방법에 따라 47~79% 범위로 동일분포 가설이 기각되는 것으로 파악되었다. 따라서 극치해석에 의한 설계파고 추정에서 두 자료를 구분하여 각각 설계파고를 추정하는 과정이 적절하다.

Keywords

References

  1. Caerio, F. and Mateus, A. (2014) Testing randomness in R, package Fig. 7. (Continued.) 'randtests', https://cran.r-project.org/web/packages/randtests/randtests.pdf.
  2. Cho, H.Y. (2019). Trend and independence tests of the MSL data. KIDS Report, 1(2) 11-21 (in Korean).
  3. Goda, Y. (2010). Random seas and design of maritime structures, 3rd Edition, Part III, World Scientific.
  4. Harper, B.A. (1996). Extreme wave height data analysis: Review and Recommendations, Technical Report, Coastal Resource Assessment Section, Systems Engineering Australia.
  5. Li, W., Isberg, J., Waters, R., Engstrom, J., Svensson, O. and Leijon, M. (2016). Statistical analysis of wave climate data using mixed distributions and extreme wave prediction. Energies, 9, 396; doi:10.3390/en9060396.
  6. Ministry of Oceans and Fisheries (2019). Report on the design wave estimation in the coastal zones, Korea (in Korean).
  7. National disaster management research institute (2019). FARD-2006 (Frequency Analysis Rainfall Data) MANUAL, www.ndmi.go.kr Research (in Korean).
  8. Pohlert, T. (2018). Non-parametric trend tests and change-point detection, R Package 'trend', https://cran.r-project.org/web/packages/trend/trend.pdf.
  9. Soukissian, T.H. and Kalantzi, G.D. (2006). Extreme value analysis methods used for extreme wave prediction. Proceedings of the 16th International Offshore and Polar Engineering Conference, 10-17, San Francisco, USA.
  10. Yamaguchi, M. and Hatada, Y. (1994). Estimation of typhoon-generated maximum wave height along the Pacific coast of Japan based on wave hindcasting, Proceedings of the 24th ICCE, 674-688, Kobe, Japan.