• Title/Summary/Keyword: Max-Min Inference

Search Result 41, Processing Time 0.026 seconds

Development of a New Max-Min Compositional Rule of Inference in Control Systems

  • Cho, Young-Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.776-782
    • /
    • 2004
  • Generally, Max-Min CRI (Compositional Rule of Inference ) method by Zadeh and Mamdani is used in the conventional fuzzy inference. However, owing to the problems of Max-Min CRI method, the inference often results in significant error regions specifying the difference between the desired outputs and the inferred outputs. In this paper, I propose a New Max-Min CRI method which can solve some problems of the conventional Max-Min CRI method. And then this method is simulated in a D.C.series motor, which is a bench marking system in control systems, and showed that the new method performs better than the other fuzzy inference methods.

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

고속 디지탈 퍼지 추론회로 개발과 산업용 프로그래머블 콘트롤러에의 응용

  • 최성국;김영준;박희재;고덕용;김재옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.354-358
    • /
    • 1992
  • This paper describes a development of high speed fuzzy inference circuit for the industrialprocesses. The hardware fuzzy inference circuit is developed utilizing a hardware fuzzy inference circuit is developed utilizing a DSP and a multiplier and accumulator chip. To enhance the inference speed, the pipeline disign is adopted at the bottleneck and the general Max-Min inference method is slightly modified as Max-max method. As a results, the inference speed is evaluated to be 100 KFLIPS. Owing to this high speed feature, satisfactory application can be attained for complex high speed motion control as well as the control of multi-input multi-output nonlinear system. As an application, the developed fuzzy inference circuit is embedded to a PLC (Porgrammable Logic Controller) for industrial process control. For the fuzzy PLC system, to fascilitate the design of the fuzzy control knowledge such as membership functions, rules, etc., a MS-Windows based GUI (Graphical User Interface) software is developed.

The Design and Implementation of An Intelligent Neuro-Fuzzy System(INFS) (지능적인 뉴로-퍼지 시스템의 설계 및 구현)

  • 조영임;황종선;손진곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.149-161
    • /
    • 1994
  • The Max-Min CRI method , a traditional inference method , has three problems: subjective formulation of membership functions, error-prone weighting strategy, and inefficient compositional rule of inference. Because of these problems, there is an insurmountable error region between desired output and inferred output. To overcome these problems, we propose an Intelligent Neuro-Fuzzy System (INFS) based on fuzzy thoery and self-organizing functions of neural networks. INFS makes use of neural networks(Error Back Propagation) to solve the first problem, and NCRI(New Max-Min CRI) method for the second. With a proposed similarity measure, NCRI method is an improved method compared to the traditional Max-Min CRI method. For the last problem, we propose a new defuzzification method which combines only the appropriate rules produced by the rule selection level. Applying INFS to a D.C. series motor, we can conclude that the error region is reduced and NCRI method performs better than Max-Min CRI method.

  • PDF

Implementation of Hardware Circuits for Fuzzy Controller Using $\alpha$-Cut Decomposition of fuzzy set

  • Lee, Yo-Seob;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.200-209
    • /
    • 2004
  • The fuzzy control based on $\alpha$-level fuzzy set decomposition. It is known to produce quick response and calculating time of fuzzy inference. This paper derived the embodiment computational algorithm for defuzzification by min-max fuzzy inference and the center of gravity method based on $\alpha$-level fuzzy set decomposition. It is easy to realize the fuzzy controller hardware. based on the calculation formula. In addition. this study proposed a circuit that generates PWM actual signals ranging from fuzzy inference to defuzzification. The fuzzy controller was implemented with mixed analog-digital logic circuit using the computational fuzzy inference algorithm by min-min-max and defuzzification by the center of gravity method. This study confirmed that the fuzzy controller worked satisfactorily when it was applied to the position control of a dc servo system.

Two-Input Max/Min Circuit for Fuzzy Inference System

  • P. Laipasu;A. Chaikla;A. Jaruwanawat;P. Pannil;Lee, T.;V. Riewruja
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.3-105
    • /
    • 2001
  • In this paper, a current mode two-input maximum (Max) and minimum (Min) operations scheme, which is a useful building block for analog fuzzy inference systems, is presented. The Max and Min operations are incorporated in the same scheme with parallel processing. The proposed scheme comprises a MOS class AB/B configuration and current mirrors. Its simple structure can provide a high efficiency. The performance of the scheme exhibits a very sharp transfer characteristic and high accuracy. The proposed scheme achieves a high-speed operation and is suitable for real-time systems. The simulation results verifying the performances of the scheme are agreed with the expected values.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Fuzzy Inference of Large Volumes in Parallel Computing Environments (병렬컴퓨팅 환경에서의 대용량 퍼지 추론)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • In fuzzy expert systems or database systems that have volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environments. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy or data, the parallel fuzzy inference algortihm extracts effective and achieves and achieves a good speed factor.

  • PDF

Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller (크리스프 타입 퍼지 제어기의 동특성 해석)

  • 권오신;최종수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.67-76
    • /
    • 1995
  • In recent research on the fuzzy controller, the crisp type fuzzy controller model, in which the consequent part of the fuzzy control rules are crisp real numbers instead of fuzzy sets, due to its simplicity in calculation, has been widely used in various applications. In this paper we try to analyze the dynamical behavior of the crisp type fuzzy controller with both inference methods of min-max compositional rule and product-sum inference. The analysis reveals that a crisp type fuzzy controller behaves approximately like a PD controller.

  • PDF

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF