• Title/Summary/Keyword: Matrix structures

Search Result 1,289, Processing Time 0.027 seconds

Analysis of Hydroelastic Responses for Very Large Floating Structures with a Shallow Draft (천흘수 초대형 부유식 해양규조물의 유탄성 응답해석)

  • 신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2000
  • A numerical method to predict responses of very large floating structures in wave is suggested using source-dipole distribution method. The deflection of the plate is calculated by the finite element method in terms of rigidity matrix of each node. The calculated results for a plate are compared with the experimental ones.

  • PDF

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

CELL-MATRIX ADHESIONS OF SOFT TISSUE CELLS AROUND DENTAL IMPLANTS (임플랜트 주위 연조직세포의 세포-기질 접착)

  • Lee Suk-Won;Rhyu In-Chul;Han Chong-Hyun;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • The importance of soft tissue response to implant abutments has become one of the major issues in current implant dentistry. To date, numerous studies have emphasized on maintaining connective tissue barriers in quantity, as well as in quality fir the long term success of dental implants. The cells mainly consisting the soft tissue around dental implants are fibroblasts and epithelial cells. The mechanism of the fibroblasts adhesions to certain substrata can be explained by the 'focal adhesion' theory. On the other hand, epithelial cells adhere tn the substratum via hemidesmosomes. The typical integrin-mediated adhesions of cells to certain matrix are called 'cell-matrix adhsions'. The focal adhesion complex of fibroblasts, in relation to the cell-matrix adhsions, consists of the extracellular matrix(ECM) such as fibronectin, the transmembrane proteins such as integrins, the intracellular cytoplasmic proteins such as vinculin, talin, and more, and the cytoskeletal structures such as filamentous actin and microtubules. The mechanosensory function of integrins and focal adhesion complexes are considered to play a major role in the cells adhesion, migration, proliferation, differentiation, division, and even apoptosis. The '3-D matrix adhesions' defined by Cukierman et al. makes a promising future for the verification of the actual process of the cell-matrix adhesions in vivo and can be applied to the field of implant dentistry in relation to obtaining strong soft tissue attachment to the implant abutments.

Design of Encoder and Decoder for LDPC Codes Using Hybrid H-Matrix

  • Lee, Chan-Ho
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.557-562
    • /
    • 2005
  • Low-density parity-check (LDPC) codes have recently emerged due to their excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and are synthesized using a $0.35 {\mu}m$ CMOS standard cell library.

  • PDF

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Feedback Techniques for Minimizing Reaction Forces in Flexible Structures (유연 구조물에서 반력 최소화를 위한 피이드백 기술)

  • Kim, Joo-Hyung;Kim, Sang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.79-86
    • /
    • 2001
  • A method for actively minimizing dynamic reaction forces in a flexible structure subject to persistent excitations is presented. One difficulty with the method, however, is that forces and moments do not converge as quickly as displacements in mathematical discretization of continuous systems, so a controller based on a truncated model of a continuous system can produce poor results. A technique using residual flexibility matrix is presented for correcting the truncated force representation. A controller designed for reaction force minimization, using the residual flexibility matrix, is applied to a model of a flexible structure, and the results are presented. Implications of various reaction force penalty combinations on the resulting control performance are also discussed.

  • PDF

A New Cascaded Multilevel Inverter Topology with Voltage Sources Arranged in Matrix Structure

  • Thamizharasan, S.;Baskaran, J.;Ramkumar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1552-1557
    • /
    • 2015
  • The paper unleashes a new idea to arrive at reduced switch count topological structures configured in the form of a matrix for a cascaded Multi level inverter (CMLI). The theory encircles to minimize the number of switches involved in the conduction path and there from acclaim reduced input current distortion, lower switching losses and electromagnetic interference. The focus extends to standardize the number of power devices required for reaching different levels of output voltage from the same architecture. It includes appropriate pulse width modulation (PWM) strategy to generate firing pulses and ensure the desired operation of the power modules. The investigative study carries with it MATLAB based simulation and experimental results obtained using suitable prototypes to illustrate the viability of the proposed concept. The promising nature of the performance projects a new dimension in the use of single phase MLIs for renewable energy related applications.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.