Browse > Article

CELL-MATRIX ADHESIONS OF SOFT TISSUE CELLS AROUND DENTAL IMPLANTS  

Lee Suk-Won (Department of Dentistry, College of Medicine, Catholic University, Saint Vincent's Hospital)
Rhyu In-Chul (Department of Prosthodontics, College of Dentistry, Yonsei University, Young-dong Severance Hospital)
Han Chong-Hyun (Department of Periodontology, College of Dentistry, Seoul National University)
Lee Jai-Bong (Department of Prosthodontics, College College of Dentistry, Seoul National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.44, no.1, 2006 , pp. 73-84 More about this Journal
Abstract
The importance of soft tissue response to implant abutments has become one of the major issues in current implant dentistry. To date, numerous studies have emphasized on maintaining connective tissue barriers in quantity, as well as in quality fir the long term success of dental implants. The cells mainly consisting the soft tissue around dental implants are fibroblasts and epithelial cells. The mechanism of the fibroblasts adhesions to certain substrata can be explained by the 'focal adhesion' theory. On the other hand, epithelial cells adhere tn the substratum via hemidesmosomes. The typical integrin-mediated adhesions of cells to certain matrix are called 'cell-matrix adhsions'. The focal adhesion complex of fibroblasts, in relation to the cell-matrix adhsions, consists of the extracellular matrix(ECM) such as fibronectin, the transmembrane proteins such as integrins, the intracellular cytoplasmic proteins such as vinculin, talin, and more, and the cytoskeletal structures such as filamentous actin and microtubules. The mechanosensory function of integrins and focal adhesion complexes are considered to play a major role in the cells adhesion, migration, proliferation, differentiation, division, and even apoptosis. The '3-D matrix adhesions' defined by Cukierman et al. makes a promising future for the verification of the actual process of the cell-matrix adhesions in vivo and can be applied to the field of implant dentistry in relation to obtaining strong soft tissue attachment to the implant abutments.
Keywords
Dental implant; Focal adhesion; Cell-matrix adhsion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factorstimulated angiogenesis in vitro: role of extracellular matrix. J cell Biol 1989:109:317-330   DOI   ScienceOn
2 Gillespie PG. Walker RG. Molecular basis of mechanosensory transduction. Nature 2001 :413: 194-196   DOI   ScienceOn
3 Geiger B. Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Mol Cell Biol 2001: 13: 584-592   DOI   ScienceOn
4 Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75:519-560   DOI
5 Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002;91:877-887   DOI   ScienceOn
6 Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 1980:208: 177-179   DOI
7 Wang HB, Dembo M. Hanks SK, Wang Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 2001: 98: 11295-11300
8 Klinghoffer RA. Sachsenmajer C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 1999: 18: 2459-2471   DOI   ScienceOn
9 Sonnenberg A, Calafat J. Janssen H. Integrin $\alpha_{6}\beta_{4}$ is located in himidesmosomes. suggesting a major role in epidermal-basement membrane adhesion. J Cell Biol 1991: 113: 907-917   DOI
10 Borradori L. Sonnenberg A. Hemidesmosornes: role in adhesion. signaling and human diseases. Curr Opin Cell Biol. 1996:8:647-65673   DOI   ScienceOn
11 Weaver VM. Lelievre S. Lakins JN. Chrenek MA. Jones JC. Giancotti F. Werb Z. Bissell MJ. Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002: 2:205-216   DOI   ScienceOn
12 Bosman FT. Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003:200:423-428   DOI   ScienceOn
13 Jones J, Asmuth J, Baker SE, Langhofer M, Roth SI. Hopkinson SB. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res 1994: 213:1-11   DOI   ScienceOn
14 Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 1998:193:1-21   DOI
15 Singer II, Scott S, Kawaka DW, Kazazis DM, Gailit J, Ruoslahti E. Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extra cellular matrix accumulation. J Cell Biol 1988:106:2171-2182   DOI
16 Stamenkovic I. Extracellular matrix remodeling: the role of matrix metalloproteinase. J Pathol 2003:200:448-464   DOI   ScienceOn
17 Pankov R. Yamada KM. Fibronectin at a glance. J Cell Science 2002: 115: 3861-3863   DOI   ScienceOn
18 Hersel U. Dahmen C. Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003:24:4385-44159   DOI   ScienceOn
19 Zamir E. Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Science 2001: 114: 3583-3590
20 Hynes RO. Integrin: versability, modulation. and signaling in cell adhesions. Cell 1992:69:11-25   DOI   ScienceOn
21 Damen EH Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001:189:1-13   DOI   ScienceOn
22 Pelham RJ. Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 1997;94:13661-13665
23 Katsumi A. Orr AW. Tzimas E. Schwartz MA. Integrins in mechanotransduction. J Biol Chem 2004;279:12001-12004   DOI   ScienceOn
24 Mitchinson TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996: 84:371-379   DOI   ScienceOn
25 Stepp MA. Spurr-Michaud S. Tisdale A, Elwell J. Gibson JK. $\alpha_{6}\beta_{4}$ integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA 1990: 87:8970-8974
26 Ayukama Y. Takeshita T. An immuneelectron microscopic localization of noncollagenous bone proteins(osteocalcin and osteopontin) at the bone-titanium interface of root tibiae. J Biomed Mat Res 1998:41: 111-119   DOI   ScienceOn
27 Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix. J Mol Med 1998:76:253-265   DOI
28 Myamoto S, Teramoto H, Coso OA, Gutkind JS. Bubelo PD. Integrin functions: molecular hierarchies of cytoskeletal and signaling molecules. J cell Biol 1995:131:791-805   DOI
29 Burridge K, Fath K, Kelly T. Nackolls G, Turner C. Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton. Ann Rev Cell Dev Biol 1988:4:487-525   DOI   ScienceOn
30 Webb DJ, Parsons KT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells-over and over and over again. Nat Cell Biol 2002:4:E97-100   DOI   ScienceOn
31 Weeks J, Barry ST, Critchley DR. Acidic phospholipids inhibit the intramolecular association between the N- and C- terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem 1996:314:827-832   DOI
32 Ilic D, Furnta Y, Kanazawa S, Takeda N, Sobuek, Nakasuji N, Momura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995:377: 539-544   DOI   ScienceOn
33 Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003: 13:264-269   DOI   ScienceOn
34 Schwartz MA, Schaller MD, Ginsderg MH. Integrins: emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 1995: 11: 549-599   DOI   ScienceOn
35 Geiger B, Bershadsky A, Pankov R, yamada KM. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001: 2: 793-805   DOI   ScienceOn
36 Jones JCR, Kurpakus MA, Cooper HM. Quaranta V. A function for the integrin $\alpha6\beta4$ in the hemidesmosome. Cell Regul 1991 :2:427-438   DOI
37 Steel JG. Johnson G. Underwwod PA. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J Biomed Mat Res 1992:26:861-884   DOI
38 Peppas NA. Langer R. Challenges in biomaterials. Science 1994:263: 1715-1720   DOI
39 Lauffenburger DA. Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996:84:359-369   DOI   ScienceOn
40 Horwitz AR, Parsons JT. Cell migrationmovin' on. Science 1999:286: 1102-1103   DOI   ScienceOn
41 Sieg DJ, Hauck CR, Schlaepfer DD. Required role of focal adhesion kinase(FAK) for integrin-stimulated cell migration. J Cell Sci 1999: 112: 2677-2691
42 Zamir E, Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 2001: 114: 3583-3590
43 Burridge K. Chrzanowka-Wodnicka M. Focal adhesions, contractility, and signaling. Ann Rev Cell Dev Biol 1996:12:463-518   DOI   ScienceOn
44 Pankov R, Cukierman E. Katz BI. Matsumoto K. Lin DC. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha5beta1 integrins promotes early fibronectin fibrillogenesis. J cell Biol 2000; 148: 1075-1090   DOI   ScienceOn
45 Hamill OP. Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 2001 ;81 :685-740   DOI
46 Borradori L, Sonnenberg A. Hemidesmosomes: role in adhesion, signaling and human diseases. Curr Opin Cell Biol 1996; 8:647-656   DOI   ScienceOn
47 Epstein ND. Davis JS. Sensing stretch is fundamental. Cell 2003; 112: 147-150   DOI   ScienceOn
48 Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyHnositol-4-5-bisphosphate. Nature 1996:381:531-535   DOI   ScienceOn
49 Zamir E. Katz M. Posen Y. Erez N. Yamada KM. Dynamic and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000;2:191-196   DOI   ScienceOn
50 Vogel V. Baneyx G. The tissue engineering puzzle: A molecular perspective. Annu Rev Biomed Eng. 2003;5:441-463   DOI   ScienceOn
51 Craig SW, Johnson RP. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol 1996:8:74-85   DOI   ScienceOn
52 Johnson RP, Craig SW. An intramolecular association between the head and tail domains of vinculin modulates talin binding. K Biol Chem 1994:269:12611-12619
53 Schmidt JW. Piepenhagen PA. Nelson WJ. Modulation of epithelial morphogenesis and cell fate by cell-to-cell signals and regulated cell adhesion. Semin Cell Biol 1993:4: 161-173
54 Kano Y. Katoh K. Masuda M. Fujiwarak. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ Res 1996:79:1000-1006   DOI   ScienceOn
55 Schwartz MA. Assosian RK. Integrins and cell proliferation: regulation of cyclindependent kinase via cytoplasmic signaling pathways. J cell Sci 2001: 114:2553-2560
56 Kroemker M, Rudiger AH, Jockush BM, Rudiger M. Intramolecular interactions in vinculin control $\alpha$-actinin binding to the vinculin head. FEBS lett. 1994:355:259-262   DOI   ScienceOn
57 Jansen JA, den Braber ET, Walboomers XF, de Ruijter JE. Soft tissue and epithelial models. Adv Dent Res. 1999; 13: 57-66   DOI   ScienceOn
58 Turner CE. Paxillin interactions. J Cell Sci 2000:113:4139-4140
59 Hollenbeck P. Microtubules get the signal. Curr Biol 2001: 16: 820-823
60 Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn 2000:218:213-234   DOI   ScienceOn
61 Zamir E. Katz BI. Aota S. Yamada KM. Geiger B. Kam I. Molecular diversity of cellmatrix adhesions. J cell Sci 1999; 112: 1655-1669
62 Lee SW. Rhyu IC. Kim KH. Han CH. Heo SJ. Cell-matrix interactions of human gingival epithelial cells and fibroblasts with microgrooved titanum alloy substrata : a scanning electron microscopic study. J Kor Acad Oral Maxillofac Impl 2004;8:2-15
63 Jockush BM, Bubeck P, Giehl K. Kroemker M, Moschner J, Rothkegel M. The molecular architecture of focal adhesions. Ann Rev Cell Dev Biol 1995:11:379-369   DOI   ScienceOn
64 Cukierman E. Pankov R, Steven DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001 :294: 1708-1712   DOI   ScienceOn
65 Stossel TP. On the crawling animals. Science 1993: 260: 1086-1094   DOI
66 Wood W. Martin P. Structures in focusfilopodia. Int J Biochem & Cell Biol 2002:34:726-730   DOI   ScienceOn
67 Nanci A. McKee MD. Ialzal S. Sakkal S. Ultrastructural and immunocytochemical analysis of the tissue response to metal implants in the rat tibiae. In: Davidovitch I. Mah J(eds). Biological Mechanisms of Tooth eruption. Resorption and Replacement by Implants. Boston: Harvard Society for the Advancement of Orthodontics. 1998 :487-500
68 Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information Curr Opin Cell Biol 1992:4: 7.72-781   DOI
69 Nievers MG. Schacpveld RQJ. Sonnenberg A. Biology and function of hemidesmosomes. Matrix Biology 1999: 18: 5-17   DOI   ScienceOn
70 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999: 285: 1028-1032   DOI   ScienceOn
71 Hall A. Rho GTPases and the actin cytoskeleton. 1998: 279: 509-514   DOI   ScienceOn
72 Yamada KM. Pankov R. Cukierman E. Dimensions and dynamics in integrin function. Braz J Med Biol Res 2003:36:959-966
73 Jones JCR. Hopkinson SB. Goldfiner LE. Structure and assembly of hemidesmosomes. BioEssays 1998: 20: 488-494   DOI   ScienceOn
74 Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003: 15: 1409-1416
75 Jones J. Asmuth J. Baker SE. Langhofer M. Roth SI. Hopkinson SB. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res. 1994;213:1-11   DOI   ScienceOn