• Title/Summary/Keyword: Matrix structure

Search Result 2,564, Processing Time 0.031 seconds

Resistance to Sulfate Attack of Concrete Containing LCD glass powder Using Industrial By-products (산업부산물을 활용한 LCD 유리 미분말 혼입 콘크리트의 황산염침식 저항성)

  • Kim, Seong-Kyum;Song, Jae-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2019
  • Purpose: This study aims to enhance the resistance against sulfate attack compared to ordinary Portland cement (OPC) concrete by using liquid crystal display (LCD) as binder. Method: The fundamental properties including compressive strength and porosity of concrete replaced by LCD up to 15% at increments of 5% and in turn, the weight, volume, and strength loss of LCD-mixed concrete was analyzed. Results: For the concrete substituted by 5% of LCD, it showed the highest compressive strength at 28 days of curing, and particular at immersion of $Na_2SO_4$ solution, it was achieved the lowest loss of weight, volume and strength due to an decreased porosity at capillaries. In contrast, there is no distinct difference of the sulfate attack resistance between LCD-mixed concretes under exposure of $MgSO_4$ solution, excepted for OPC concrete. Conclusion: In this study, comparison of resistance to sulfate attack between LCD-mixed concretes, and it would be proposed the possibility of LCD usage as binder through long-term verification with extended replacement ratio and identification of changes of hydrates in the cement matrix.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

A Study on the Electrical Conductivity and Electromagnetic Shielding of High Performance Fiber Reinforced Cementitious Composites(HPFRCC) (고성능 시멘트 복합체의 전기전도도 및 전자파 특성 시험 평가)

  • Lee, Nam-Kon;Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study investigated electrical conductivity, electromagnetic shielding effectiveness, and mechanical property to improve electromagnetic shielding performance of high performance fiber reinforced cementitious composites (HPFRCC). Steel fiber, steel slag and carbon black as a conductive material were incorporated into the HPFRCC mixes. In addition, 2% CNT solution which was produced by dispersing multi-wall carbon nanotube (MWCNT) into water was used as a conductive material. In the test results, electrical conductivity of HPFRCC specimens was very low except for the specimen incorporating 1% carbon black. Micro structure of cement matrix was changed as the curing time increased, which negatively affected the conductive network of HPFRCC. In case of HC1 specimen showing a conductive network (0.083 S/cm), the electrical conductivity of the specimen after being dried at $60^{\circ}C$ for 72 hours to exclude the effect of water on electrical conductivity was significantly reduced to 0.0003 S/cm. The most important parameter of electromagnetic shielding effect was found to be a steel fiber while the effect of carbon black and steel slag was very few. The correlation between electrical conductivity and electromagnetic shielding effect does not seem to be clear.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Composition, Ecology and Conservation of the Andong Serpentine Flora, South Korea (안동 사문암 지역의 식물상과 생태와 보전)

  • Park, Jeong Seok;Kim, Yun Ha;Nam, Hee Jung;Eom, Byeongcheol;Lee, Gyeong-Yeon;Kim, Jong Won
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.515-540
    • /
    • 2022
  • The ultramafic serpentine area, the small size of 3 km2, remains in Andong, South Korea. We researched the ecological flora and its structure through the 12 times field investigations from 2013 till 2018. A total of 527 taxa including the previously recorded species-list was analyzed. Among them, 331 taxa were filed up as a real flora of the serpentine area. On the vegetation land-cover map describing a characteristic aspect of species distribution, a matrix of the sparse forest by Pinus densiflora and the grassland patches were the main landscape. The study area was acknowledged as a home for the ethnobotanical species and grassland components, and clearly distinctive from the non-serpentine area. The original habitat was too deteriorated by introducing the non-site soils and exotic plants. Conclusionally a designation of a protected area and the long-term ecological monitoring were requested.

Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique (키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석)

  • Youngseok Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2023
  • In this study, trends in ICT education were investigated by analyzing the frequency of appearance of keywords related to machine learning and using conversion of iteration correction(CONCOR) techniques. A total of 304 papers from 2018 to the present published in registered sites were searched on Google Scalar using "ICT education" as the keyword, and 60 papers pertaining to ICT education were selected based on a systematic literature review. Subsequently, keywords were extracted based on the title and summary of the paper. For word frequency and indicator data, 49 keywords with high appearance frequency were extracted by analyzing frequency, via the term frequency-inverse document frequency technique in natural language processing, and words with simultaneous appearance frequency. The relationship degree was verified by analyzing the connection structure and centrality of the connection degree between words, and a cluster composed of words with similarity was derived via CONCOR analysis. First, "education," "research," "result," "utilization," and "analysis" were analyzed as main keywords. Second, by analyzing an N-GRAM network graph with "education" as the keyword, "curriculum" and "utilization" were shown to exhibit the highest correlation level. Third, by conducting a cluster analysis with "education" as the keyword, five groups were formed: "curriculum," "programming," "student," "improvement," and "information." These results indicate that practical research necessary for ICT education can be conducted by analyzing ICT education trends and identifying trends.

Development of Risk Analysis Structure for Large-scale Underground Construction in Urban Areas (도심지 대규모 지하공사의 리스크 분석 체계 개발)

  • Seo, Jong-Won;Yoon, Ji-Hyeok;Kim, Jeong-Hwan;Jee, Sung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Systematic risk management is necessary in grand scaled urban construction because of the existence of complicated and various risk factors. Problems of obstructions, adjacent structures, safety, environment, traffic and geotechnical properties need to be solved because urban construction is progressed in limited space not as general earthwork. Therefore the establishment of special risk management system is necessary to manage not only geotechnical properties but also social and cultural uncertainties. This research presents the technique analysis by the current state of risk management technique. Risk factors were noticed and the importance of each factor was estimated through survey. The systemically categorized database was established. Risk extraction module, matrix and score module were developed based on the database. Expected construction budget and time distribution can be computed by Monte Carlo analysis of probabilities and influences. Construction budgets and time distributions of before and after response can be compared and analyzed 80 the risks are manageable for entire whole construction time. This system will be the foundation of standardization and integration. Procurement, efficiency improvement, effective time and resource management are available through integrated management technique development and application. Conclusively decrease in cost and time is expected by systemization of project management.