Browse > Article
http://dx.doi.org/10.7732/kjpr.2022.35.4.515

Composition, Ecology and Conservation of the Andong Serpentine Flora, South Korea  

Park, Jeong Seok (Department of Biology, Keimyung University)
Kim, Yun Ha (Department of Biology, Keimyung University)
Nam, Hee Jung (Research Center for Endangered Species, National Institute of Ecology)
Eom, Byeongcheol (Institute of Habitat Ecology and Phytosociology)
Lee, Gyeong-Yeon (Research Center for Endangered Species, National Institute of Ecology)
Kim, Jong Won (Institute of Habitat Ecology and Phytosociology)
Publication Information
Korean Journal of Plant Resources / v.35, no.4, 2022 , pp. 515-540 More about this Journal
Abstract
The ultramafic serpentine area, the small size of 3 km2, remains in Andong, South Korea. We researched the ecological flora and its structure through the 12 times field investigations from 2013 till 2018. A total of 527 taxa including the previously recorded species-list was analyzed. Among them, 331 taxa were filed up as a real flora of the serpentine area. On the vegetation land-cover map describing a characteristic aspect of species distribution, a matrix of the sparse forest by Pinus densiflora and the grassland patches were the main landscape. The study area was acknowledged as a home for the ethnobotanical species and grassland components, and clearly distinctive from the non-serpentine area. The original habitat was too deteriorated by introducing the non-site soils and exotic plants. Conclusionally a designation of a protected area and the long-term ecological monitoring were requested.
Keywords
Ethnobotanical plants; Habitat conservation; Pinus densiflora; Sparse-woodland; Ultramafic outcrops; Vegetation distinctiveness;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Violle, C., M.L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116(5):882-892.   DOI
2 Whittaker, R.H. 1954. The ecology of serpentine soils. Ecology 35(2):258-288.   DOI
3 Lee, J.S. and A.N. Lim. 1998. Soil chemical properties of natural Rhododendron habitats and content of foliar inorganic nutrient of Rhododendrons growing in the natural habitats. Research Bulletin 57(2):141-149. Daegu Catholic Univ., Gyeongsan, Korea (in Korean).
4 Lee, T.B. 2003a. Coloured Flora of Korea. Vol. I. Hyangmounsa, Seoul, Korea. pp. 1-901 (in Korean).
5 Lee, W.T. 1996. Lineamenta Florae Koreae I. Academy Book, Seoul, Korea. pp. 1-624 (in Korean).
6 Lee, H.S. 1991. Studies on the characters of soil and flora on limestone area, Danyang. The Bulletin of Institute of Basic Science 5:67-80. Seowon Univ., Cheongju, Korea (in Korean).
7 McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21(4):178-185.   DOI
8 McNeely, J.A., H.A. Mooney, L.E. Neville, P.J. Schei and J.K. Waage. 2001. A Global Strategy on Invasive Alien Species. IUCN Gland, Switzerland, and Cambridge, UK. pp. 1-50.
9 Hwang, S.Y., J.W. Lee, E.H. La and J.K. Anh. 2020. Flora of the vascular plants of the Baekdudaegan conservation area: Deok-chi to Yuk-sim-nyeong. Korean J. Pl. Taxon. 50(1):56-79 (in Korean).   DOI
10 Kim, J.W, B.K. Choi, T.B. Ryu and Lee, G.Y. 2012. Application and assessment of National Vegetation Naturalness: In National Institute of Environmental Research (ed.), Guideline for the 4th National Survey for Natural Environment. National Institute of Environmental Research, Inchon, Korea. pp. 81-172 (in Korean).
11 Korea National Arboretum (KNA). 2011. Illustrated Grasses of Korea. KNA, Pocheon, Korea. pp. 1-600 (in Korean)
12 Main, J.L. 1981. Magnesium and calcium nutrition of a serpentine endemic grass. Am. Midl. Nat. 105(1):196-199.   DOI
13 Wilson, J. and G. Lee. 1989. Infiltration invasion. Funct. Ecol. 3:379-382.
14 National Institute of Biological Resources (NIBR). 2015. Flora of Biodiversity Hot-spot in Korea (IV). NIBR, Inchon, Korea. pp. 59-106 (in Korean).
15 Park, S.H. 2009. New Illustrations and Photographs of Naturalized Plants of Korea. Ilchokak, Seoul, Korea. pp. 1-575 (in Korean).
16 Ryou, S.H., J.M. Kim, S.S. Cha and J.K. Shim. 2010. Decomposition of leaf litter containing heavy metals in the Andong serpentine area, Korea. Korean J. Environ. Ecol. 24(4):426-435 (in Korean).
17 Nam, G.H., J.H. Kim, Y.C. Kim, J.S. Kim and B.Y. Lee. 2012. Floristic study of county Pyeong-chang and Yeong-wol including limestone regions (Prov. Gangwon-do) from Korea. Korean J. Environ. Ecol. 26(1):11-38 (in Korean).
18 Korea National Arboretum (KNA). 2016b. Standard Checklist of Cultivated Plants in Korea. KNA, Yangpoung, Korea. pp. 1-510 (in Korean).
19 Mucina, L., M.C. Rutherford and L.W. Powrie. 2006. The logic of the map: approaches and procedures: In Mucina, L. and M.C. Rutherford (eds.), The Vegetation of South Africa, Lesotho and Swaziland, Strelitzia 19, South African National Biodiversity Institute, Pretoria, South Africa. pp. 12-29.
20 Nakai, T. 1919. Report on the Vegetation of the Island Ooryongto or Dagelet Island, Corea. The Government of Chosen, Seoul, Korea. pp. 1-87 (in Japanese).
21 National Geographic Information Institute (NGII). 2020. Aerial Photograph. Accessed December 11, 2020. http://map.ngii.go.kr/ms/map/NlipMap.do.
22 Kim, J.H., S.Y. Kim, E.H. Jung, J.S. Kim, T.K. Noh, H.M. Bae, C.H. Nam and B.Y. Lee. 2016. Floristic diversity of serpentine area in Andong, Korea. Korean J. Environ. Ecol. 30(1):19-38 (in Korean).   DOI
23 Hidalgo-Triana, N., A.V. Perez Latorre and J.H. Thorne. 2018. Plant functional traits and groups in a Californian serpentine chaparral. Ecol. Res. 33(3):525-535.   DOI
24 Ryu, T.B. 2012. Ecological classification of naturalized plant species in South Korea. Department of Biology, MS Thesis, Keimyung Univ., Korea. pp. 1-121 (in Korean).
25 Song, J.M., H.J. Son, Y.S. Kim, S.C. Kim, D.H. Lee, W.G. Park and S.J. Kwon. 2016. The flora of limestone area, Mt. Seokbyeong. Korean J. Plant Res. 29(2):241-263 (in Korean).   DOI
26 Stevanovic, V., K. Tan and G. Iatrou. 2003. Distribution of the endemic Balkan flora on serpentine I: obligate serpentine endemics. Plant Syst. Evol. 242:149-170.   DOI
27 Bilz, M., S.P. Kell, N. Maxted and R.V. Lansdown. 2011. European Red List of Vascular Plants. Publications Office of the European Union, EU. pp. 1-130.
28 Hwang, J.Y., J.J. Kim and S.S. Ock. 1993. Genesis and mineralogy of the serpentinite deposits in the Andong area, Korea. J. Korean Inst. Mining Geol. 26(1):1-10 (in Korean).
29 Kim, C.H. 2000. Assessment of natural environment: 1. Selection of plant taxa. Korean J. Environ. Biol. 18(1):163-198 (in Korean).
30 Kim, J.S., B.C. Lee, J.M. Chung and J.H. Pak. 2005. Flora and phytogeography on Mt. Deokhang (Gangwon-do), limestone area in Korea. Korean J. Pl. Taxon. 35(4):337-364 (in Korean).   DOI
31 Kim, J.W. 2004. Vegetation Ecology. World Science Publisher, Seoul, Korea. pp. 1-340 (in Korean).
32 Kim, J.W. 2016. The Ecological Flora of Korea. Vol. 2. Grassland Plants. Nature & Ecology, Seoul, Korea. pp. 1-816 (in Korean).
33 Kim, J.W. and Y.K. Lee. 2006. Classification and Assessment of Plant Communities. World Science Publisher, Seoul, Korea. pp. 1-240 (in Korean).
34 Brooks, R.R. 1987. Serpentine and Its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR (USA). pp. 1-454.
35 Diaz, S., M. Cabido and F. Casanoves. 1998. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9(1):113-122.   DOI
36 World Flora Online (WFO). 2021. An Online Flora of All Known Plants. (accessed on 5 June 2021). http://www.worldfloraonline.org/.
37 Wright, J.W., M.L. Stanton and R. Scherson. 2006. Local adaptations to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol. Ecol. Res. 8:1-21.
38 Alexander, E.B., R.G. Coleman, T. Keeler-Wolfe and S.P. Harrison. 2007. Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation. Oxford University Press New York, NY (USA). pp. 1-512.
39 Bradley, R., A.J. Burt and D.J. Read. 1982. The biology of mycorrhiza in the Ericaceae: VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91(2):197-209.   DOI
40 Chung, G.Y., M.S. Park, B.M. Nam, K.N. Hong, J. Jang, H.J. Jeong and K.O. Yoo. 2010. Distribution of vascular plants in Gallasan (Andong-si.Uiseong-gun, Gyeongbuk). Korean J. Plant Res. 23(1):99-114 (in Korean).
41 Google Maps. 2017. "Gisan-ri, Pungcheon-myeon, Andong, Korea." Google. Accessed June 5, 2017. https://goo.gl/maps/RXLgWEZyAtAagb4K8.
42 Doust, L.L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. J. Ecol. 69(3):743-755.   DOI
43 Environmental Systems Research Institute (ESRI). 2005. ArcGIS Software. Version 9.1. ESRI, Redlands, CA (USA).
44 Eom, B.C. 2019. Climatically potential natural vegetation and phytoclimatic map of Korea. Department of Biology, Ph.D. Thesis, Keimyung Univ., Korea. pp. 1-132 (in Korean).
45 Grime, J.P. and S. Pierce. 2012. The Evolutionary Strategies that Shape Ecosystems. John Wiley & Sons, Chichester, UK. pp. 1-240.
46 Honnay, O. and B. Bossuyt. 2005. Prolonged clonal growth: Escape route or route to extinction? Oikos 108(2):427-432.   DOI
47 Kim, S.Y. 2012. Syntaxonomy of subalpine vegetation in Korea. Ph.D. Thesis, Keimyung Univ., Korea. pp. 51-57 (in Korean).
48 Proctor, J. 1971. The plant ecology of serpentine: III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. J. Ecol. 59(3):827-842.   DOI
49 Lee, H.S. and Y.H. You. 2002. Studies on the flora of the vascular plants on Mt. Manroesan and its surrounding regions. The Bulletin of Institute of Basic Science 16:55-89. Seowon Univ., Cheongju, Korea (in Korean).
50 Kim, J.W, S.E. Lee and J.A. Lee. 2017. Hwasan wetland vegetation in Gunwi, South Korea: With a phytosociological focus on alder (Alnus japonica (Thunb.) Steud.) forests. Korean J. Ecol. and Environ. 50(1):70-78 (in Korean).   DOI
51 Kim, T.J. 1996. The vegetation of Andong serpentine area. Department of Biology, MS Thesis, Chung-Ang Univ., Korea. pp. 1-34 (in Korean).
52 Korea Institute of Geoscience and Mineral Resources (KIGAM). 2019. Geological Map. Accessed August 1, 2019. https://mgeo.kigam.re.kr/.
53 Korea Meteorological Administration (KMA). 2021. Automatic Weather Station. Accessed December 3, 2021. https://data.kma.go.kr/cmmn/main.do.
54 Korea National Arboretum (KNA). 2016a. Illustrated Cyperaceae of Korea. KNA, Pocheon, Korea. pp. 1-609 (in Korean)
55 Korea National Arboretum (KNA). Korean Plant Names Index. (accessed on 5 June 2021). http://www.nature.go.kr/.
56 Tilman, D. and H. Olff. 1991. An experimental study of the effects of pH and nitrogen on grassland vegetation. Acta Oecol. 12(3):427-441.
57 Kruckeberg, A.R. 1951. Intraspecific variability in the response of certain native plant species to serpentine soil. Am. J. Bot. 38(6):408-419.   DOI
58 Stoughton, J.A. and W.A. Marcus. 2000. Persistent impacts of trace metals from mining on floodplain grass communities along Soda Butte Creek, Yellowstone National Park. Environ. Manage. 25(3):305-320.   DOI
59 Sung, J.W. and S.G. Kang. 2020. Vascular Plant Species in the Southern Sejong. Korean J. Plant Res. 33(4):311-336 (in Korean).   DOI
60 Bae, S.T. 2016. Study on the forest vegetation of serpentine area in Gongju, Chungchongnam-do, Korea. Department of Ecology Landscape Architecture-Design, MS Thesis, Jeonbuk National Univ., Korea. pp. 1-55 (in Korean).
61 Brady, K.U., A.R. Kruckeberg and H.D. Bradshaw Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. S. 36:243-266.   DOI
62 Fernandez, S., S. Seoane and A. Merino. 1999. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Commun. Soil Sci. Plan. 30(13-14):1867-1884.   DOI
63 Hwang, J.Y. 2002. Character and application of serpentine. J. Miner. Soc. Korea (Mineral & Industry) 15(2):48-54 (in Korean).
64 Jeong, J.H., C.S. Kim, C.S. Goo, C.H. Lee, H.G. Won and J.G. Byun. 2003. Physio-chemical properties of Korean forest soils by parent rocks. J. Korean For. Soc. 92(3):254-262 (in Korean).
65 Kim, J.H., Y.S. Kwak and H.T. Mun. 1992. Classification of calcicoles and calcifuges on the basis of the ratio of soluble to insoluble Ca2+ and Mg2+ in the leaves. Korean J. Ecol. 15(3):311-328 (in Korean).
66 Kim, M.H., M.S. Han, K.K. Kang, Y.E. Na and H.S. Bang. 2011. Effects of climate change on C4 plant list and distribution in South Korea: a review. Korean J. Agric. For. Meteor. 13(3):123-139 (in Korean).   DOI
67 Kim, J.W. 2013. The Ecological Flora of Korea. Vol. 1. Synanthrophic Plants. Nature & Ecology, Seoul, Korea. pp. 1-1199 (in Korean).
68 Harrison, S. 1999. Local and regional diversity in a patchy landscape: Native, alien, and endemic herbs on serpentine. Ecology 80(1):70-80.   DOI
69 Kim, J.W, B.C. Eom, J.A. Lee, J.S. Park, Y.H. Kim and G.Y. Lee. 2019. The floristic regional indicator plants: Ecological paradox of conservation measure for plant species. The 74th Annual Meeting of the Korean Association of Biological Science. Jeju, Korea. p. 66 (in Korean).
70 Kim, W.B. 1999. A study on the flora of serpentine area in Andong. J. Korean Biota. 4:175-188 (in Korean).
71 Korea National Arboretum (KNA). 2008. Illustrated Pteridophyta of Korea. KNA, Pocheon, Korea. pp. 1-547 (in Korean)
72 Kruckeberg, A.R. 1967. Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brittonia 19(2):133-151.   DOI
73 Lee, J.A. and J.W. Kim. 2017. A new association of Gueldenstaedtio-Zoysietum japonicae: a syntaxonomical and syngeographical description of the southernmost population of Gueldenstaedtia verna in South Korea. Weed Turf. Sci. 6(1):40-54 (in Korean).   DOI
74 Lee, T.B. 2003b. Coloured Flora of Korea. Vol. II. Hyangmounsa, Seoul, Korea. pp. 1-914 (in Korean).