• Title/Summary/Keyword: Matrix separation

Search Result 375, Processing Time 0.021 seconds

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation (수소/이산화탄소 분리를 위한 프리스탠딩 고분자 및 혼합매질 분리막에 대한 총설)

  • Kang, Miso;Lee, So Youn;Kang, Du Ru;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

Tuning the surface charge of mixed matrix membranes using novel chemistry

  • Priyanka Mistry;C.N. Murthy
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • Mixed matrix membranes have gained significant recognition in the wastewater treatment industry for their effectiveness in removing dyes, proteins, and heavy metals from water sources. Researchers have developed an innovative technique to enhance properties of these membranes by incorporating amine-functionalized carbon nanotubes into the polymer matrix. This approach introduces amine functional groups onto the membrane surface, which are then modified with trimesoyl chloride and cyanuric chloride. The modified membranes are characterized by XPS to confirm successful bonding of amines with the trimesoyl chloride and cyanuric chloride. The surface charge of the modified membrane also plays a role in the modification process; the membrane modified with trimesoyl chloride has a negative surface charge, while the one modified with cyanuric chloride has a more positive charge. At the same acidic pH, the positive or negative charge of the mixed matrix membranes assists in enhancing the rejection of heavy metals. This results in improved antifouling properties for both modified membranes. The heavy metal rejection for all modified membranes is higher than for unmodified membranes, due to both adsorption and complexation abilities of the functional groups on the membrane surface with heavy metal ions. As the membrane surface functionalities increase through modification, the separation due to complexation also increases. The bulk morphology of the membrane remains unchanged, while roughness slightly increases due to the surface treatment.

Stability Enhancement by the Interaction of Diffusion Flames (다수 비예혼합 화염의 안정화 특성)

  • Kim, Jin-Sun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1420-1426
    • /
    • 2003
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes and kind of fuels. Four nozzle arrangements - cross 5, matrix 8, matrix 9 and circle 8 nozzles - are used in the experiment. There are many parameters affecting flame stability in multi-nozzle flames such as nozzle separation distance, fuel flowrates and nozzle configuration etc. Key factors to enhance blowout limit are the nozzle configuration and the existence of center nozzle. Even nozzle exit velocity equal 204 m/s, flame is not extinguished when there is not a center nozzle and s/d=15.3∼27.6 in matrix-8 and circular-8 configurations. At these conditions, recirculation of burnt gas is related with stability augmentation. Fuel mole fraction measurements using laser induced fluorescence reveal lifted flame base is not located at the stoichiometric contour.

A Stability Region of Time-varying Perturbations by Using Generalized Eigenvalue Problem (일반화된 고유치 문제를 이용한 시변 섭동의 안정 범위)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.901-906
    • /
    • 2005
  • The stability robustness problem of continuous linear systems with nominal and delayed time-varying perturbations is considered. In the previous results, the entire bound was derived only for the overall perturbations without separation of the perturbations. In this paper, the sufficient condition for stability of the system with two perturbations, which are nominal and delayed, is expressed as linear matrix inequalities(LMIs). The corresponding stability bounds fer those two perturbations are determined by LMI(Linear Matrix Inequality)-based generalized eigenvalue problem. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed.

Robust Stabilization of Uncertain LTI Systems via Observer Model Selection (관측기 모델 선정을 통한 모델 불확실성을 갖는 선형 시불변 시스템 강인 안정화)

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.822-827
    • /
    • 2014
  • This paper presents a robust observer-based output feedback control for stabilization of linear time invariant systems with polytopic uncertainties. To this end, this paper not only finds a robust observer gain but also suggests how to determine the model used in the observer, which is not obvious due to model uncertainties in the conventional observer design method. The robust observer gain and the observer model are selected in a way that the whole closed-loop is stable by solving LMIs and BMIs (Linear Matrix Inequalities and Bilinear Matrix Inequalities). A simulation example shows that the proposed robust observer-based output feedback control successfully leads to closed-loop stability.

Synthesis, Fabrication and Characterization of Photorefractive Composite Utilizing Flexible NLO Chromophores and Crosslinkable Photoconducting Matrix

  • Suh, Sang-Chul;Shim, Sang-Chul;Kim, Ae-Rhan;Yoo, Dong-Jin
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.101-106
    • /
    • 2004
  • The photorefractive composites fabricated by blending NLO chromophores such as 3-(4-{bis-[4-(2-ethylhexyloxy)-phenyl]-amino}-phenyl)-2-isocyano-acrylonitrile (PAIA), bis-[4-(2-ethyl-hexyloxy)-phenyl]-{4-[2-(4-nitrophenyl)-vinyl]-phenyl}-amine (PNPA) with photoconducting crosslinkable matrix, bis-(4-ethynylphenyl)-(4-octyloxyphenyl)-amine (BEOPEA), showed photorefractive property due to the high composition of NLO chromophores caused by introducing alkoxy chain, and many problems faced in typical organic photorefractive systems such as timeconsuming chemical synthesis, difficulty in rational design, intrinsic instability and phase separation could be avoided.

  • PDF

Mixing matrix estimation method for dual-channel time-frequency overlapped signals based on interval probability

  • Liu, Zhipeng;Li, Lichun;Zheng, Ziru
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.658-669
    • /
    • 2019
  • For dual-channel time-frequency (TF) overlapped signals with low sparsity in underdetermined blind source separation (UBSS), this paper proposes an effective method based on interval probability to estimate and expand the types of mixing matrices. First, the detection of TF single-source points (TF-SSP) is used to improve the TF sparsity of each source. For more distinguishability, as the ratios of the coefficients from different columns of the mixing matrix are close, a local peak-detection mechanism based on interval probability (LPIP) is proposed. LPIP utilizes uniform subintervals to optimize and classify the TF coefficient ratios of the detected TF-SSP effectively in the case of a high level of TF overlap among sources and reduces the TF interference points and redundant signal features greatly to enhance the estimation accuracy. The simulation results show that under both noiseless and noisy cases, the proposed method performs better than the selected mainstream traditional methods, has good robustness, and has low algorithm complexity.