Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.4.218

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation  

Kang, Miso (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, So Youn (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kang, Du Ru (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.32, no.4, 2022 , pp. 218-226 More about this Journal
Abstract
Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.
Keywords
hydrogen; carbon dioxide; free-standing membrane; mixed-matrix membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).
2 S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019).
3 P. J. Megia, A. J. Vizcaino, J. A. Calles, and A. Carrero, "Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review", Energy Fuels, 35, 16403 (2021)
4 A. Zuttel, A. Remhof, A. Borgschulte, and O. Friedrichs, "Hydrogen: The future energy carrier", Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 368, 3329 (2010).
5 S. Sircar and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep. Sci. Technol., 35, 667 (2000).
6 W. Liemberger, M. Gross, M. Miltner, and M. Harasek, "Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas", J. Clean. Prod., 167, 896 (2017).
7 M. El-Shafie, "Hydrogen separation using palladium-based membranes: Assessment of H2 separation in a catalytic plasma membrane reactor", Int. J. Energy Res., 46, 3572 (2022).
8 A. X. Wu, J. A. Drayton, and Z. P. Smith, "The perfluoropolymer upper bound", AlChE J., 65, e16700 (2019).
9 L. Hu, S. Pal, H. Nguyen, V. Bui, and H. Lin, "Molecularly engineering polymeric membranes for H2/CO2 separation at 100-300 ℃", J. Polym. Sci., 58, 2467 (2020).
10 T. H. Lee, B. K. Lee, J. S. Park, J. Park, J. H. Kang, S. Y. Yoo, I. Park, Y.-H. Kim, and H. B. Park, "Surface modification of Matrimid® 5218 polyimide membrane with fluorine-containing diamines for efficient gas separation", Membranes, 12, 1-16 (2022).
11 X. Li, R. P. Singh, K. W. Dudeck, K. A. Berchtold, and B. C. Benicewicz, "Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures", J. Membr. Sci., 461, 59 (2014).
12 J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Mixed-matrix membranes", Angew. Chem. Int. Ed., 56, 9292 (2017).
13 M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017).
14 K. Y. Wang, M. Weber, and T.-S. Chung, "Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: A review", J. Mater. Chem. A, 10, 8687 (2022).
15 W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for CO2 separation", Membr. J., 25, 373 (2015).
16 N. Ercan, C. Kocyigit, A. Durmus, and A. Kasgoz, "Cyclic olefin copolymer (COC)-metal organic framework (MOF) mixed matrix membranes (MMMs) for H2/CO2 separation", J. Nat. Gas Sci. Eng., 95, 104155 (2021).
17 S. Japip, K.-S. Liao, and T.-S. Chung, "Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 ℃", Adv. Mater., 29, 1603833 (2017).
18 M. De Pascale, F. M. Benedetti, E. Lasseuguette, M.-C. Ferrari, K. Papchenko, M. Degli Esposti, P. Fabbri, and M. G. De Angelis, "Mixed matrix membranes based on Torlon® and ZIF-8 for High-temperature, size-selective gas separations", Membranes, 11, 1-19 (2021).
19 C. Regmi, S. Ashtiani, Z. Hrdlicka, and K. Friess, "CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes", Membranes, 11, 1-24 (2021).
20 G. Illing, K. Hellgardt, M. Schonert, R. J. Wakeman, and A. Jungbauer, "Towards ultrathin polyaniline films for gas separation", J. Membr. Sci., 253, 199 (2005).
21 S. Japip, K.-S. Liao, Y. Xiao, and T.-S. Chung, "Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking", J. Membr. Sci., 497, 248 (2016).
22 C. Soto, E. S. Torres-Cuevas, L. Palacio, P. Pradanos, B. D. Freeman, A. E. Lozano, A. Hernandez, and B. Comesana-Gandara, "Gas permeability, fractional free volume and molecular kinetic diameters: The effect of thermal rearrangement on ortho-hydroxy polyamide membranes loaded with a porous polymer network", Membranes, 12, (2022).
23 L. Cao, K. Tao, A. Huang, C. Kong, and L. Chen, "A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation", Chem. Commun., 49, 8513 (2013).
24 M. Omidvar, C. M. Stafford, and H. Lin, "Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100 ℃", J. Membr. Sci., 575, 118 (2019).
25 H. W. Kwon, K. S. Im, J. H. Kim, S. H. Kim, D. H. Kim, and S. Y. Nam, "Preparation and gas permeation characteristics of polyetherimide hollow fiber membrane for the application of hydrogen separation", Membr. J., 31, 456 (2021).
26 D. Alique, D. Martinez-Diaz, R. Sanz, and J. A. Calles, "Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production", Membranes, 8, 1-39 (2018).   DOI
27 N. E. Leon, Z. Liu, M. Irani, and W. J. Koros, "How to get the best gas separation membranes from state-of-the-art glassy polymers", Macromolecules, 55, 1457 (2022).
28 K. A. Stevens, J. D. Moon, H. Borjigin, R. Liu, R. M. Joseph, J. S. Riffle, and B. D. Freeman, "Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles", J. Membr. Sci., 593, 117427 (2020).
29 H. S. Lau, S. K. Lau, L. S. Soh, S. U. Hong, X. Y. Gok, S. Yi, and W. F. Yong, "State-of-the-art organic- and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond", Membranes, 12, 1-69 (2022).
30 B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).