DOI QR코드

DOI QR Code

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation

수소/이산화탄소 분리를 위한 프리스탠딩 고분자 및 혼합매질 분리막에 대한 총설

  • Kang, Miso (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, So Youn (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Du Ru (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 강미소 (연세대학교 화공생명공학과) ;
  • 이소연 (연세대학교 화공생명공학과) ;
  • 강두루 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2022.08.08
  • Accepted : 2022.08.17
  • Published : 2022.08.31

Abstract

Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.

대용량 화학 및 청정에너지의 운반체인 수소는 석유화학 산업 및 연료전지 등에서 많이 활용되는 중요한 산업용 기체이다. 특히 수소는 주로 증기개질 및 가스화를 통해 화석 연료에서 생성되며 부산물로 이산화탄소가 발생한다. 따라서 고순도 수소를 얻기 위해서는 이산화탄소를 제거해야 한다. 본 총설에서는 배러 단위[1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]로 보고된 이산화탄소로부터 수소를 분리하는 프리스탠딩 고분자 분리막 및 혼합매질 분리막에 초점을 맞추었다. 최근 보고된 다양한 논문들을 분석하여 분리막의 구조, 형태, 상호 작용 및 제조 방법에 대해 논의하고 구조-물성 관계를 이해하여 향후 더 나은 분리막 소재를 찾는 데 도움이 되고자 한다. 다양한 분리막의 성능 및 특성 검토를 통해 수소/이산화탄소 분리에 대한 Robeson 성능 한계선을 제시하고, 가교, 혼합 및 열처리 등의 기술을 사용하여 분리 특성을 개선하는 다양한 혼합매질 분리막에 대해 논의하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임 (No. 20213030040170).

References

  1. H. S. Lau, S. K. Lau, L. S. Soh, S. U. Hong, X. Y. Gok, S. Yi, and W. F. Yong, "State-of-the-art organic- and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond", Membranes, 12, 1-69 (2022).
  2. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).
  3. S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019).
  4. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).
  5. P. J. Megia, A. J. Vizcaino, J. A. Calles, and A. Carrero, "Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review", Energy Fuels, 35, 16403 (2021)
  6. A. Zuttel, A. Remhof, A. Borgschulte, and O. Friedrichs, "Hydrogen: The future energy carrier", Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 368, 3329 (2010).
  7. H. W. Kwon, K. S. Im, J. H. Kim, S. H. Kim, D. H. Kim, and S. Y. Nam, "Preparation and gas permeation characteristics of polyetherimide hollow fiber membrane for the application of hydrogen separation", Membr. J., 31, 456 (2021).
  8. S. Sircar and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep. Sci. Technol., 35, 667 (2000).
  9. W. Liemberger, M. Gross, M. Miltner, and M. Harasek, "Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas", J. Clean. Prod., 167, 896 (2017).
  10. D. Alique, D. Martinez-Diaz, R. Sanz, and J. A. Calles, "Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production", Membranes, 8, 1-39 (2018). https://doi.org/10.3390/membranes8010001
  11. M. El-Shafie, "Hydrogen separation using palladium-based membranes: Assessment of H2 separation in a catalytic plasma membrane reactor", Int. J. Energy Res., 46, 3572 (2022).
  12. K. Y. Wang, M. Weber, and T.-S. Chung, "Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: A review", J. Mater. Chem. A, 10, 8687 (2022).
  13. N. E. Leon, Z. Liu, M. Irani, and W. J. Koros, "How to get the best gas separation membranes from state-of-the-art glassy polymers", Macromolecules, 55, 1457 (2022).
  14. A. X. Wu, J. A. Drayton, and Z. P. Smith, "The perfluoropolymer upper bound", AlChE J., 65, e16700 (2019).
  15. L. Hu, S. Pal, H. Nguyen, V. Bui, and H. Lin, "Molecularly engineering polymeric membranes for H2/CO2 separation at 100-300 ℃", J. Polym. Sci., 58, 2467 (2020).
  16. M. Omidvar, C. M. Stafford, and H. Lin, "Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100 ℃", J. Membr. Sci., 575, 118 (2019).
  17. T. H. Lee, B. K. Lee, J. S. Park, J. Park, J. H. Kang, S. Y. Yoo, I. Park, Y.-H. Kim, and H. B. Park, "Surface modification of Matrimid® 5218 polyimide membrane with fluorine-containing diamines for efficient gas separation", Membranes, 12, 1-16 (2022).
  18. X. Li, R. P. Singh, K. W. Dudeck, K. A. Berchtold, and B. C. Benicewicz, "Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures", J. Membr. Sci., 461, 59 (2014).
  19. K. A. Stevens, J. D. Moon, H. Borjigin, R. Liu, R. M. Joseph, J. S. Riffle, and B. D. Freeman, "Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles", J. Membr. Sci., 593, 117427 (2020).
  20. J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Mixed-matrix membranes", Angew. Chem. Int. Ed., 56, 9292 (2017).
  21. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017).
  22. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for CO2 separation", Membr. J., 25, 373 (2015).
  23. N. Ercan, C. Kocyigit, A. Durmus, and A. Kasgoz, "Cyclic olefin copolymer (COC)-metal organic framework (MOF) mixed matrix membranes (MMMs) for H2/CO2 separation", J. Nat. Gas Sci. Eng., 95, 104155 (2021).
  24. C. Soto, E. S. Torres-Cuevas, L. Palacio, P. Pradanos, B. D. Freeman, A. E. Lozano, A. Hernandez, and B. Comesana-Gandara, "Gas permeability, fractional free volume and molecular kinetic diameters: The effect of thermal rearrangement on ortho-hydroxy polyamide membranes loaded with a porous polymer network", Membranes, 12, (2022).
  25. M. De Pascale, F. M. Benedetti, E. Lasseuguette, M.-C. Ferrari, K. Papchenko, M. Degli Esposti, P. Fabbri, and M. G. De Angelis, "Mixed matrix membranes based on Torlon® and ZIF-8 for High-temperature, size-selective gas separations", Membranes, 11, 1-19 (2021).
  26. C. Regmi, S. Ashtiani, Z. Hrdlicka, and K. Friess, "CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes", Membranes, 11, 1-24 (2021).
  27. G. Illing, K. Hellgardt, M. Schonert, R. J. Wakeman, and A. Jungbauer, "Towards ultrathin polyaniline films for gas separation", J. Membr. Sci., 253, 199 (2005).
  28. S. Japip, K.-S. Liao, and T.-S. Chung, "Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 ℃", Adv. Mater., 29, 1603833 (2017).
  29. S. Japip, K.-S. Liao, Y. Xiao, and T.-S. Chung, "Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking", J. Membr. Sci., 497, 248 (2016).
  30. L. Cao, K. Tao, A. Huang, C. Kong, and L. Chen, "A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation", Chem. Commun., 49, 8513 (2013).