• 제목/요약/키워드: Matrix mineralization

Search Result 84, Processing Time 0.036 seconds

A STUDY ON A CULTURE OF HUMAN ALVEOLAR BONE CELLS (사람 치조골세포의 배양에 관한 연구)

  • Choi, Byung-Ho;Park, Jin-Hyung;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.602-605
    • /
    • 2000
  • Human alveolar bone cells were isolated from alveolar bone fragments obtained from normal individual undergoing third molar extractions. Alveolar bone fragments were cultured as explant. Cells began to migrate in the first $5{\sim}7$ day and were confluent in $5{\sim}7$ week. Matrix mineralization was observed by 4 week. Our studies utilize established protocols for the characterization of these cells as osteoblasts by means of alkaline phosphatase activity determination, identification of osteocalcin antigens, establishing the presence of cells expressing type I collagen and determining the ability of cells to produce calcification. Transmission electron microscopic observations confirmed the presence of a collagen matrix undergoing a mineralization process. This new model, using human alveolar bone cells, may provide a tool to investigate alveolar bone development and physiology and to set up new therapeutic approaches.

  • PDF

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar;Ghatak, Himadri Roy
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.292-307
    • /
    • 2022
  • The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

  • Jeong, Youngdan;Yang, Wonkyung;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.187-194
    • /
    • 2014
  • Objectives: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Seo, Jeong-Yeon;Lim, HyangI;Kim, Tae-Hyeon;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Park, Joo-Cheol;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC-23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment

  • Lalthazuala, Levia;Tiwari, Diwakar;Lee, Seung-Mok;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.340-347
    • /
    • 2021
  • The aim of this research is to assess the use of high purity potassium ferrate (VI) for the efficient removal of sulfamethoxazole (SMX), one of the potential micro-pollutant found in aqueous waste. In addition, various parametric studies have enabled us to deduce the mechanism in the degradation process. The pH and concentration of sulfamethoxazole enable the degradation of pollutants. Moreover, the time-dependent degradation nature of sulfamethoxazole showed that the degradation of ferrate (VI) in presence of sulfamethoxazole followed the pseudo-second order kinetics and the value of rate constant increased with an increase in the SMX concentration. The stoichiometry of SMX and ferrate (VI) was found to be 2 : 1 and the overall rate constant was estimated to be 4559 L2/mmol2/min. On the other hand, the increase in pH from 8.0 to 5.0 had catalyzed the degradation of SMX. Similarly, a significant percentage in mineralization of SMX increased with a decrease in pH and concentration. The presence of co-existing ions and SMS spiked real water samples was extensively analyzed in the removal of SMX using ferrate (VI) to simulate studies on real matrix implication of ferrate (VI) technology.

Effect of chitosan on bone matrix expression and mineralization in primary rat calvarial cell (키토산이 백서 태자 두개관세포의 세포외기질 발현과 석회화에 미치는 영향)

  • Kim, Jae-Cheol;Ciu, De-Zhe;Kim, Young-Joon;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.759-769
    • /
    • 2004
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan, a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the expression of extracellular matrix proteins in primary rat calvarial cells in Vitro. In the control group, cells was cultured with BGjb media. In the experimental groups, cells were cultured with chitosan in concentration of 0.01, 0.1, 1.0 and 2.0 mg/ml. Then each group was characterized by examining alkaline phosphatase activity at 3 and 7 days, and the ability to produce mineralized nodules of rat calvarial cells at 14 and 21 days. Synthesis of type I collagen (COL-I), osteocalcin (OCN), bone sialoprotein (BSP) was evaluated by RT-PCR at 14 days. The results were as follows: 1. Alkaline phosphatase activity was significantly higher in the concentration of chitosan 0.01mg/ml, 0.1mg/ml and 1.0mg/ml compared to control (p<0.05). 2. The percentage of mineralized bone nodule was more in the concentration of chitosan 0.1mg/ml and 1.0mg/ml than the control. 3. At 14 day culture, the expression of OCN was increased by chitosan in concentration of 1.0 mg/ml and 2.0 mg/ml. These results suggested that chitosan in concentration of 0.1 and 1,0 mg/ml stimulate the extracellular matrix of primary rat calvarial cells and may facilitate the formation of bone.