Browse > Article
http://dx.doi.org/10.14478/ace.2021.1031

Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment  

Lalthazuala, Levia (Department of Chemistry School of Physical Sciences, Mizoram University)
Tiwari, Diwakar (Department of Chemistry School of Physical Sciences, Mizoram University)
Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 340-347 More about this Journal
Abstract
The aim of this research is to assess the use of high purity potassium ferrate (VI) for the efficient removal of sulfamethoxazole (SMX), one of the potential micro-pollutant found in aqueous waste. In addition, various parametric studies have enabled us to deduce the mechanism in the degradation process. The pH and concentration of sulfamethoxazole enable the degradation of pollutants. Moreover, the time-dependent degradation nature of sulfamethoxazole showed that the degradation of ferrate (VI) in presence of sulfamethoxazole followed the pseudo-second order kinetics and the value of rate constant increased with an increase in the SMX concentration. The stoichiometry of SMX and ferrate (VI) was found to be 2 : 1 and the overall rate constant was estimated to be 4559 L2/mmol2/min. On the other hand, the increase in pH from 8.0 to 5.0 had catalyzed the degradation of SMX. Similarly, a significant percentage in mineralization of SMX increased with a decrease in pH and concentration. The presence of co-existing ions and SMS spiked real water samples was extensively analyzed in the removal of SMX using ferrate (VI) to simulate studies on real matrix implication of ferrate (VI) technology.
Keywords
Ferrate (VI) technology; Sulfamethoxazole; Efficient treatment; Mineralization of pollutant; Real matrix treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Porcar-Santos, A. Cruz-Alclade, N. Lopez-Vinent, D. Zanganas, and S. Sans, Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products, Sci. Total Environ., 736, 139605 (2020).   DOI
2 O. Gonzalez, S. Sans, and S. Esplugas, Sulfamethoxazole abatement by photo-fenton: Toxicity, inhibition and biodegradability assessment of intermediates, J. Hazard. Mater., 146, 459-164 (2007).   DOI
3 T. Garoma, S. K. Umamaheshwar, and A. Mumper, Removal of sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole from aqueous solution by ozonation, Chemosphere, 79, 814-820 (2010).   DOI
4 S. W. Krasner, P. Westerhoff, B. Chen, B. E. Rittmann, and G. Amy, Occurrence of disinfection byproducts in United States wastewater treatment plant effluents, Environ. Sci. Technol., 43, 8320-8325 (2009).   DOI
5 A. Gobel, C. S. Mc Ardell, A. Joss, H. Siegrist, and W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ., 372, 361-371 (2007).   DOI
6 A. Nikolaou, S. Meric, and D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387, 1225-1234 (2007).   DOI
7 A. Sanableh, M. Semreen, L. Semerjian, M. Abdallah, M. Mousa, and N. Darwish, Contaminants of emerging concern in Sharjah wastewater treatment plant, Sharjah, UAE, J. Environ. Sci., 14, 225-234 (2018).
8 D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, and J.-K. Yang, Ferrate(VI): A green chemical for the oxidation of cyanide aqueous/waste solutions, J. Environ. Sci. Health A, 42, 803-881 (2007).   DOI
9 S. M. Lee and D. Tiwari, Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides, J. Environ. Sci., 22, 1347-1352 (2009).
10 J. Q. Jiang, S. Wang, and A. Panagoulopoulos, The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006).   DOI
11 V. K. Sharma, Oxidative transformation of environmental pharmaceuticals by Cl2, ClO2, O3 and Fe (VI): Kinetic assessment, Chemosphere, 73, 1379-1386 (2008).   DOI
12 A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S Polo, M. S. Berber-Mendoza, and M. V. Lopez-Ram, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assessment, J. Environ. Manage., 255, 109927 (2020).   DOI
13 V. K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordin. Chem. Rev., 257, 495-510 (2013).   DOI
14 D. Ghernaout and M. W. Naceur, Ferrate(VI): In situ generation and water treatment-A review, Desalin. Water Treat., 30, 319-332 (2011).   DOI
15 M. Dlugosz, P. Zmudzki, A. Kwiecien, K. Szczubialka, J. Krzek, and J. Nowakowska, Photocatalytic degradation of sulfamethoxazole using TiO2- expanded perlite photocatalyst, J. Hazard. Mater., 298, 146-153 (2015).   DOI
16 H. Gong and W. Chu, Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2, J. Hazard. Mater., 314, 197-203 (2016).   DOI
17 K. K. Shimabuku, J. P. Kearns, J. E. Martinez, R. B. Mahoney, L. Monero-Vasqez, and R. S. Smmes, Biochar sorbents for sulfamethoxazole removal from surface water, stormwater and wastewater effluent, Water Res., 96, 236-245 (2016).   DOI
18 T. Luo, J. Wan, Y. Ma, Y. Wang, and Y. Wan, Sulfamethoxazole degradation by an Fe (ii)-activated persulfate process: Insight into the reactive sites, product identification nad degradation pathways, Environ. Sci. Impacts, 21, 1560-1569 (2019).   DOI
19 D. Tiwari, L. Sailo, and L. Pachauau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate (VI), Sep. Purif. Technol., 132, 77-83 (2014).   DOI
20 A. G. Trovo, R. F. P. Nogueira, A. Aguera, R. Amadeo, F. Alba, C. Sirtori, and S. Malato, Degradation of sulfamethoxazole in water by solar photo-fenton. Chemical and toxicological evaluation, Water Res., 43, 3922-3931 (2009).   DOI
21 D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008).   DOI
22 L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micropollutants from aqueous solutions using ferrate (VI): Physio-chemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017).
23 V. K. Sharma, L. Chen, and R. Zboril, Review on high valent FeVI (ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustain Chem. Eng., 4, 18-34 (2016).   DOI
24 D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate (VI) on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008).   DOI
25 T. Ohta, T. Kamachi, Y. Shiota, and K. Yoshizawa, A theoretical study of alcohol oxidation by ferrate, J. Org. Chem., 66(12), 4122-4131 (2001).   DOI
26 V. K. Sharma, S. K. Mishra, and N. Nesnas, Oxidation of sulfonamide antimicrobials by ferrate (VI) [FeO42-], Environ. Sci. Technol., 40, 7222-7227 (2006).   DOI
27 J. D. Rush, Z. Zhao, and B. H. J. Bielski, Reaction of ferrate (VI)/ ferrate (V) with hydrogen peroxide and superoxide anion- a stopped-flow and premix pulse radiolysis study, Free Rad. Res., 24, 186-198 (1996).
28 V. K. Sharma, S. K. Mishra, and A. K. Ray, Kinetics assessment of the potassium ferrate (VI) oxidation of anti-bacterial drug sulfamethoxazole, Chemosphere, 62, 128-134 (2006).   DOI
29 C. Li, X. Z. Li, N. Graham, and N. Y. Gao, The aqueous degradation of bisphenol A and steroid estrogens by ferrate, Water Res., 42, 109-120 (2008).   DOI
30 J. K. Yang, D. Tiwari, M. R. Yu, L. Pachuau, and S. M. Lee, Application of ferrate(VI) in the application of industrial wastes containing Zn(II)-NTA complexes in aqueous solutions: A green chemical treatment, Environ. Technol., 31, 791-798 (2010).   DOI
31 Y. L. Lin, C. C. Tsai, and N. Y. Zheng, Improving the organic and biological fouling resistance of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization, Sci. Total Environ., 635, 543-550 (2018).   DOI
32 D. Tiwari, Ferrate(VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution. In: Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation (Ed. V. K. Sharma, R. Doong, H. Kim, R. S. Varma, D. D. Dionysiou; American Symposium series, American Chemical Society, Washington DC), 161 (2016).
33 T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data, Toxicol. Lett., 131, 5-17 (2002).   DOI
34 J. M. Brausch, K. A. Connors, B. W. Brooks, and G. M. Rand, Human pharmaceuticals in the aquatic environment: A review of recent toxicoilogical studies and considerations for toxicity testing, Rev. Environ. Contam. Toxicol., 218, 1-99 (2012).
35 W. Baran, E. Aamek, J. Ziemianska, and A. Sobczak, Effects of the presence of sulfonamides in the environment and their influence on human health, J. Hazard. Mater., 196, 1-15 (2011).   DOI
36 A. Shimizu, H. Takada, T. Koike, A. Takeshita, M. Saha, and N. Nakada, Ubiquitous occurrence of sulfonamides in tropical Asian waters, Sci. Total. Environ., 452-453, 108-115 (2013).   DOI
37 A. M. Comerton, R. C. Andrews, D. M. Bagley, and C. Y. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313, 323-335 (2008).   DOI
38 J. Q. Jiang, Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146, 617-623 (2007).   DOI
39 F. Santos, C. M. Ribeiro de Almeida, I. Ribeiro, A. C. Ferreira, and A. P. Mucha, Removal of veterinary antibiotics in constructed wetland microcosms-Response of bacterial communities, Ecotoxicol. Environ. Saf., 169, 894-901 (2019).   DOI
40 S. Tajik, H. Beitollahi, M. S. Asl, H. W. Jang, and M. Shokouhimehr, BN-Fe3O4-Pd nanocomposite modified carbon paste electrode: Efficient voltammetric sensor for sulfamethaxazole, Ceram. Int., 47, 13903-13911 (2021).   DOI
41 Y. Shi, G. Liu, L. Wang, and H. Zhang, Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: Remarkable adsorbents for sulfamethoxazole removal, RSC Adv., 9, 17841-17851 (2019).   DOI
42 F. Reguval and A. K. Sarmah, Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, natural organic matter and 17 α-ethinylestradiol, Sci. Total Environ., 628-629, 722-730 (2018).   DOI
43 Y. Shiota, N. Kihara, T. Kamachi, and K. Yoshizawa, A theoretical study on reactivity and regioselectivity in the hydroxylation of admantane by ferrate (VI), J. Org. Chem., 68, 3958-3965 (2003).   DOI
44 Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10, 161-171 (2004).   DOI