Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment |
Lalthazuala, Levia
(Department of Chemistry School of Physical Sciences, Mizoram University)
Tiwari, Diwakar (Department of Chemistry School of Physical Sciences, Mizoram University) Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University) Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) |
1 | O. Porcar-Santos, A. Cruz-Alclade, N. Lopez-Vinent, D. Zanganas, and S. Sans, Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products, Sci. Total Environ., 736, 139605 (2020). DOI |
2 | O. Gonzalez, S. Sans, and S. Esplugas, Sulfamethoxazole abatement by photo-fenton: Toxicity, inhibition and biodegradability assessment of intermediates, J. Hazard. Mater., 146, 459-164 (2007). DOI |
3 | T. Garoma, S. K. Umamaheshwar, and A. Mumper, Removal of sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole from aqueous solution by ozonation, Chemosphere, 79, 814-820 (2010). DOI |
4 | S. W. Krasner, P. Westerhoff, B. Chen, B. E. Rittmann, and G. Amy, Occurrence of disinfection byproducts in United States wastewater treatment plant effluents, Environ. Sci. Technol., 43, 8320-8325 (2009). DOI |
5 | A. Gobel, C. S. Mc Ardell, A. Joss, H. Siegrist, and W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ., 372, 361-371 (2007). DOI |
6 | A. Nikolaou, S. Meric, and D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387, 1225-1234 (2007). DOI |
7 | A. Sanableh, M. Semreen, L. Semerjian, M. Abdallah, M. Mousa, and N. Darwish, Contaminants of emerging concern in Sharjah wastewater treatment plant, Sharjah, UAE, J. Environ. Sci., 14, 225-234 (2018). |
8 | D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, and J.-K. Yang, Ferrate(VI): A green chemical for the oxidation of cyanide aqueous/waste solutions, J. Environ. Sci. Health A, 42, 803-881 (2007). DOI |
9 | S. M. Lee and D. Tiwari, Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides, J. Environ. Sci., 22, 1347-1352 (2009). |
10 | J. Q. Jiang, S. Wang, and A. Panagoulopoulos, The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006). DOI |
11 | V. K. Sharma, Oxidative transformation of environmental pharmaceuticals by Cl2, ClO2, O3 and Fe (VI): Kinetic assessment, Chemosphere, 73, 1379-1386 (2008). DOI |
12 | A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S Polo, M. S. Berber-Mendoza, and M. V. Lopez-Ram, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assessment, J. Environ. Manage., 255, 109927 (2020). DOI |
13 | V. K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordin. Chem. Rev., 257, 495-510 (2013). DOI |
14 | D. Ghernaout and M. W. Naceur, Ferrate(VI): In situ generation and water treatment-A review, Desalin. Water Treat., 30, 319-332 (2011). DOI |
15 | M. Dlugosz, P. Zmudzki, A. Kwiecien, K. Szczubialka, J. Krzek, and J. Nowakowska, Photocatalytic degradation of sulfamethoxazole using TiO2- expanded perlite photocatalyst, J. Hazard. Mater., 298, 146-153 (2015). DOI |
16 | H. Gong and W. Chu, Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2, J. Hazard. Mater., 314, 197-203 (2016). DOI |
17 | K. K. Shimabuku, J. P. Kearns, J. E. Martinez, R. B. Mahoney, L. Monero-Vasqez, and R. S. Smmes, Biochar sorbents for sulfamethoxazole removal from surface water, stormwater and wastewater effluent, Water Res., 96, 236-245 (2016). DOI |
18 | T. Luo, J. Wan, Y. Ma, Y. Wang, and Y. Wan, Sulfamethoxazole degradation by an Fe (ii)-activated persulfate process: Insight into the reactive sites, product identification nad degradation pathways, Environ. Sci. Impacts, 21, 1560-1569 (2019). DOI |
19 | D. Tiwari, L. Sailo, and L. Pachauau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate (VI), Sep. Purif. Technol., 132, 77-83 (2014). DOI |
20 | A. G. Trovo, R. F. P. Nogueira, A. Aguera, R. Amadeo, F. Alba, C. Sirtori, and S. Malato, Degradation of sulfamethoxazole in water by solar photo-fenton. Chemical and toxicological evaluation, Water Res., 43, 3922-3931 (2009). DOI |
21 | D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008). DOI |
22 | L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micropollutants from aqueous solutions using ferrate (VI): Physio-chemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017). |
23 | V. K. Sharma, L. Chen, and R. Zboril, Review on high valent FeVI (ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustain Chem. Eng., 4, 18-34 (2016). DOI |
24 | D. Tiwari, J. K. Yang, Y. Y. Chang, and S. M. Lee, Application of ferrate (VI) on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008). DOI |
25 | T. Ohta, T. Kamachi, Y. Shiota, and K. Yoshizawa, A theoretical study of alcohol oxidation by ferrate, J. Org. Chem., 66(12), 4122-4131 (2001). DOI |
26 | V. K. Sharma, S. K. Mishra, and N. Nesnas, Oxidation of sulfonamide antimicrobials by ferrate (VI) [FeO42-], Environ. Sci. Technol., 40, 7222-7227 (2006). DOI |
27 | J. D. Rush, Z. Zhao, and B. H. J. Bielski, Reaction of ferrate (VI)/ ferrate (V) with hydrogen peroxide and superoxide anion- a stopped-flow and premix pulse radiolysis study, Free Rad. Res., 24, 186-198 (1996). |
28 | V. K. Sharma, S. K. Mishra, and A. K. Ray, Kinetics assessment of the potassium ferrate (VI) oxidation of anti-bacterial drug sulfamethoxazole, Chemosphere, 62, 128-134 (2006). DOI |
29 | C. Li, X. Z. Li, N. Graham, and N. Y. Gao, The aqueous degradation of bisphenol A and steroid estrogens by ferrate, Water Res., 42, 109-120 (2008). DOI |
30 | J. K. Yang, D. Tiwari, M. R. Yu, L. Pachuau, and S. M. Lee, Application of ferrate(VI) in the application of industrial wastes containing Zn(II)-NTA complexes in aqueous solutions: A green chemical treatment, Environ. Technol., 31, 791-798 (2010). DOI |
31 | Y. L. Lin, C. C. Tsai, and N. Y. Zheng, Improving the organic and biological fouling resistance of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization, Sci. Total Environ., 635, 543-550 (2018). DOI |
32 | D. Tiwari, Ferrate(VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution. In: Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation (Ed. V. K. Sharma, R. Doong, H. Kim, R. S. Varma, D. D. Dionysiou; American Symposium series, American Chemical Society, Washington DC), 161 (2016). |
33 | T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data, Toxicol. Lett., 131, 5-17 (2002). DOI |
34 | J. M. Brausch, K. A. Connors, B. W. Brooks, and G. M. Rand, Human pharmaceuticals in the aquatic environment: A review of recent toxicoilogical studies and considerations for toxicity testing, Rev. Environ. Contam. Toxicol., 218, 1-99 (2012). |
35 | W. Baran, E. Aamek, J. Ziemianska, and A. Sobczak, Effects of the presence of sulfonamides in the environment and their influence on human health, J. Hazard. Mater., 196, 1-15 (2011). DOI |
36 | A. Shimizu, H. Takada, T. Koike, A. Takeshita, M. Saha, and N. Nakada, Ubiquitous occurrence of sulfonamides in tropical Asian waters, Sci. Total. Environ., 452-453, 108-115 (2013). DOI |
37 | A. M. Comerton, R. C. Andrews, D. M. Bagley, and C. Y. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313, 323-335 (2008). DOI |
38 | J. Q. Jiang, Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146, 617-623 (2007). DOI |
39 | F. Santos, C. M. Ribeiro de Almeida, I. Ribeiro, A. C. Ferreira, and A. P. Mucha, Removal of veterinary antibiotics in constructed wetland microcosms-Response of bacterial communities, Ecotoxicol. Environ. Saf., 169, 894-901 (2019). DOI |
40 | S. Tajik, H. Beitollahi, M. S. Asl, H. W. Jang, and M. Shokouhimehr, BN-Fe3O4-Pd nanocomposite modified carbon paste electrode: Efficient voltammetric sensor for sulfamethaxazole, Ceram. Int., 47, 13903-13911 (2021). DOI |
41 | Y. Shi, G. Liu, L. Wang, and H. Zhang, Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: Remarkable adsorbents for sulfamethoxazole removal, RSC Adv., 9, 17841-17851 (2019). DOI |
42 | F. Reguval and A. K. Sarmah, Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, natural organic matter and 17 α-ethinylestradiol, Sci. Total Environ., 628-629, 722-730 (2018). DOI |
43 | Y. Shiota, N. Kihara, T. Kamachi, and K. Yoshizawa, A theoretical study on reactivity and regioselectivity in the hydroxylation of admantane by ferrate (VI), J. Org. Chem., 68, 3958-3965 (2003). DOI |
44 | Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10, 161-171 (2004). DOI |