Browse > Article
http://dx.doi.org/10.33961/jecst.2021.01074

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes  

Meena, Vinod Kumar (Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology)
Ghatak, Himadri Roy (Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 292-307 More about this Journal
Abstract
The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.
Keywords
Lamotrigine; Electrochemical Advanced Oxidation; Mineralization; Kinetics; Energy Consumption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.P. Wood, C.D. Preez, A. Steenkamp, C. Duvenage, E.R. Rohwer, Environ. Pollut., 2017, 230, 453-462.   DOI
2 O.S. Keen, I. Ferrer, E.M. Thurman, K.G. Linden, Chemosphere, 2014, 117, 316-323.   DOI
3 R.B. Young, B. Chefetz, A. Liu, Y. Desyaterik, T. Borch, Environ. Sci.: Processes Impacts, 2014, 16, 848-857.   DOI
4 O.S. Keen, S. Baik, K.G. Linden, D.S. Aga, N.G. Love, Environ Sci. Technol., 2012, 46(11), 6222-6227.   DOI
5 A. Hanawa, K. Asai, G. Ogata, H. Hibino, Y. Einaga, Electrochim. Acta, 2018, 271, 35-40.   DOI
6 C.A. Martinez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Chem. Rev., 2015, 115(24), 13362-13407.   DOI
7 R.S. Saberi, S. Shahrokhian, Bioelectrochemistry, 2012, 84, 38-43.   DOI
8 I. Ferrer, E.M. Thurman, J. Chromatogr. A, 2012, 1259, 148-157.   DOI
9 J.H. Writer, R.C. Antweiler, I. Ferrer, J. N. Ryan, E. M. Thurman, Environ. Sci. Technol., 2013, 47(17), 9781-9790.   DOI
10 S. Smarzewska, D. Guziejewski, A. Leniart, W. Ciesielski, J. Electrochem. Soc., 2017, 164(7), B321-B329.   DOI
11 K. Morawska, T. Poplawski, W. Ciesielski, S. Smarzewska, Bioelectrochemistry, 2020, 136, 107630.   DOI
12 X.Q. Wang, H.F. Wang, X. Zhang, S.Y. Yu, X.S. Huang, J.T. Zhang, C.L. Tian, S.Y. Lang, J. Clin. Neurosci., 2015. 22(6), 1005-1011.   DOI
13 B.A. Wols, C.H.M. Hofman-Caris, Water Res., 2012, 46(9), 2815-2827.   DOI
14 B. Chefetz, R. Marom, O. Salton, M. Oliferovsky, V. Mordehay, J. Ben-Ari, Y. Hadar, Environ. Pollut., 2019, 250, 546-553.   DOI
15 H.R. Ghatak, Int. J. Hydrog. Energy, 2020, 45(56), 31466-31480.   DOI
16 A.F. Bollmann, W. Seitz, C. Prasse, T. Lucke, W. Schulz, T. Ternes, J. Hazard Mater., 2016, 320, 204-215.   DOI
17 J. Jeong, J. Lee, Sep. Purif. Technol., 2012, 84, 35-40.   DOI
18 H.R. Ghatak, Environ. Technol., 2014, 35(19), 2483-2492.   DOI
19 E. Aseman-Bashiz, H. Sayyaf, J. Mol. Liq., 2020, 300, 112285.   DOI
20 J.O. McNamara, Farmacoterapia das epilepsias, in L.L. Brunton, B.A. Chabner, B.C. knollmann, As Bases Farmacologicas da Terapeutica Goodman e Gilman, 12th Edition, McGraw Hill, Rio de Janeiro, Brazil, 2003.
21 M.E.B. Calvo, O.D. Renedo, M.J.A. Martinez, Anal. Chim. Acta, 2005, 549(1-2), 74-80.   DOI
22 B. Zonja, S. Perez, D. Barcelo, Environ. Sci. Technol., 2015, 50(1), 154-164.   DOI
23 R.H. Chew, R.E. Hales, S.C. Yudofsky, What Your Patient Needs to Know about Psychiatric Medications, 2nd ed., American Psychiatric Pub. Inc, 2009, 201-205.
24 C. Born, B. Bernhard, S. Dittmann, F. Seemuller, H. Grunze, J. Affect. Disord., 2009, 115(1-2), 241-245.   DOI
25 I. Ferrer, E.M. Thurman, Anal. Chem., 2010, 82(19), 8161-8168.   DOI
26 H. Wang, D. Qian, X. Xiao, S. Gao, J. Cheng, B. He, L. Liao, J. Deng, Biosens. Bioelectron., 2017, 94, 663-670.   DOI
27 J.S. Chang, E. Moon, B. Cha, K. Ha, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2010, 34(7), 1322-1326.   DOI
28 N.M. El-Enany , D.T. El-Sherbiny, A.A. Abdelal, F.F. Belal, J. Fluoresc., 2010, 20(2), 463-472.   DOI
29 R.T. Wechsler, R. Leroy, A.V. Cott, A.E. Hammer, A. Vuong, R. Huffman, K. VanLandingham, J.A. Messenheimer, Epilepsy Res., 2014, 108(6), 1128-1136.   DOI
30 F. Li, Z.D. Lin, Y. Hu, W. Li, C.C. Xue, N.D. Poonit, Seizure, 2016, 37, 41-44.   DOI
31 B. Zonja, A. Delgado, J.L. Abad, S. Perez, D. Barcelo, Water Res., 2016, 100, 466-475.   DOI
32 H.R. Foster, G.A. Burton, N. Basu, E.E. Werner, Environ. Toxicol. Chem., 2010, 29(12), 2845-2850.   DOI
33 X.S. Miao, J-J Yang, C.D. Metcalfe, Environ. Sci. Technol., 2005, 39(19), 7469-7475.   DOI
34 E. Berman, E. Marom, D. Ekstein. I. Blatt, S. Eyal, Epilepsy Behav., 2016, 61,82-85.   DOI
35 S.W. da Silva, E.M. Navarro, M.A. Rodrigues, A.M. Bernardes, V. Perez-Herranz, J. Electroanal. Chem., 2019, 832, 112-120.   DOI
36 Y. Samet, L. Agengui, R. Abdelhedi, Chem. Eng. J., 2010, 161(1-2), 167-172.   DOI
37 K. Beattie, G. Phadke, J. Novakovic, Chapter 6- Lamotrigine, Profiles of Drug Substances, Excipients and Related Methodology, 2012, 37, 245-285.
38 J. Davis, J.C. Baygents, J. Farrell, Electrochimiva Acta, 2014, 150, 68-74.   DOI
39 J. Cai, M., Y. Pan, X. Lu, Sep. Purif. Technol., 2020, 230, 115867.   DOI
40 S. You, B. Liu, Y. Gao, Y. Wang, C.Y. Tang, Y. Huang, N. Ren, Electrochim. Acta, 2016, 214, 326-335.   DOI
41 M. Hamza, R. Abdelhedi, E. Brillas, I. Sires, J. Electroanal. Chem., 2009, 627(1-2), 41-50.   DOI
42 E. Guinea, J.A. Garrido, R.M. Rodriguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Electrochim. Acta, 2010, 55(6), 2101-2115.   DOI