• Title/Summary/Keyword: Matrix coefficients

Search Result 498, Processing Time 0.028 seconds

Structure of System Matrix of one Machine System with Controllers (저차모델계통의 계통행렬의 구조)

  • 권세혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1146-1152
    • /
    • 1990
  • Direct calculation algorithm for the nonzero elements of system matrix is suggested for a single machine connected to the infinite bus. Excitation system and power system stabilizer are included. When the system matrix is partitioned into 15 nonzero blocks, we can identify the location of nonzero elements and formula for each element. No matrix inversion and multiplication are necessary. Sensitivity coefficients with respect to controller parameters are suggested based on the structure of system matrix.

Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices (새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.

Analysis of the first order eigenvalue sensitivity affected by generator model (발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석)

  • Cho, Eon-Jung;Lee, Kun-Jae;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

Dynamic Characteristics Analysis of a Machine-Tool Spindle System (공작기계 주축계의 진동특성해석에 관한 연구)

  • Kim, Seok-Il;Gwak, Byeong-Man;Lee, Hu-Sang;Jeong, Jae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous Absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Kim, Wook;Lee, Dong-Hoon;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.896-901
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several compartments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated plates, airspaces or porous materials. Based on these results, a guidance for the design of multiple layer perforated plate systems combined with airspaces and porous absorbing materials is discussed in detail.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Lee, Dong-Hoon;Kim, Wook;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.1-388
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several companments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method fur various combinations of perforated Plates, airspaces or porous materials. (omitted)

  • PDF

A New Estimation Model of Predicting the Sound Absorption Performance for Multiple Perforated Plate Systems (다중 다공판 시스템의 흡음성능 예측을 위한 계산모델 개발)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.877-882
    • /
    • 2002
  • A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

  • PDF

An Application of the Matrix Partitioning for the Motion Analysis of Floating Bodies (부유체 운동해석을 위한 부분행렬 이용방법)

  • 김동준;윤길수
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.129-138
    • /
    • 1986
  • A matrix partitioning method is proposed for the 2-D motion analysis of floating bodies. For the numerical solution, the boundary of a floating body is approximated with a series of line segments and the governing integral equation is transformed into a system of linear equations. A new solution procedure of resulting linear equation with complex coefficients is formulated and programmed using a matrix partitioning scheme and the Choleski decomposition. From the case study, it is found that the proposed method is efficient in the motion analysis of floating bodies, especially in the calculation of hydrodynamic coefficients. Also, it requires smaller memory size and less computing time compared with conventional methods.

  • PDF

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.

ERROR ANALYSIS OF THE hp-VERSION UNDER NUMERICAL INTEGRATIONS FOR NON-CONSTANT COEFFICIENTS

  • KIM, IK-SUNG
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.317-332
    • /
    • 2005
  • In this paper we consider the hp-version to solve non-constant coefficients elliptic equations on a bounded, convex polygonal domain ${\Omega}$ in $R^2$. A family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties can be used for calculating the integrals. When the numerical quadrature rules $I_m{\in}G_p$ are used for computing the integrals in the stiffness matrix of the variational form we will give its variational form and derive an error estimate of ${\parallel}u-{\widetilde{u}}^h_p{\parallel}_{1,{\Omega}$.

  • PDF