• Title/Summary/Keyword: Matrix Multiplication

Search Result 167, Processing Time 0.023 seconds

A Hybrid Method for Vibration Analysis of Rotor Systems (회전축계의 진동해석을 위한 Hybrid법에 관한 연구)

  • 양보석;최원호
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • The simplest method which has been used extensively for vibration analysis is the transfer matrix method introduced by Myklestad and was later extended by many researchers. The crude approximation results in considerable error on the predicted natural frequencies and to increase the accuracy the number of elements used in the analysis must be increased. In addition, numerical instability can occur as a result of matrix multiplication. Also the main disadvantage of the finite element method is the large computer memory requirements for complex systems. The new method proposed in this paper combines the transfer matrix and finite dynamic element techniques to form a powerful algorithm for vibration analysis of rotor system. It is shown that the accuracy improves significantly when the transfer matrix for each segment is obtained from finite dynamic element techniques.

  • PDF

POSINORMAL TERRACED MATRICES

  • Rhaly, H. Crawford, Jr.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper is a study of some properties of a collection of bounded linear operators resulting from terraced matrices M acting through multiplication on ${\ell}^2$; the term terraced matrix refers to a lower triangular infinite matrix with constant row segments. Sufficient conditions are found for M to be posinormal, meaning that $MM^*=M^*PM$ for some positive operator P on ${\ell}^2$; these conditions lead to new sufficient conditions for the hyponormality of M. Sufficient conditions are also found for the adjoint $M^*$ to be posinormal, and it is observed that, unless M is essentially trivial, $M^*$ cannot be hyponormal. A few examples are considered that exhibit special behavior.

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

Design of a Digital Neuron Processor Using the Residue Number System (잉여수 체계를 이용한 디지털 뉴론 프로세서의 설계)

  • 윤현식;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.69-76
    • /
    • 1993
  • In this paper we propose a design of a digital neuron processor using the residue number system for efficient matrix.vector multiplication involved in neural processing. Since the residue number system needs no carry propagation for modulus operations, the neuron processor can perform multiplication considerably fast. We also propose a high speed algorithm for computing the sigmoid function using the specially designed look-up table. Our method can be implemented area-effectively using the current technology of digital VLSI and siumlation results positively demonstrate the feasibility of our method. The proposed method would expected to adopt for application field of digital neural network, because it could be realized to currently developed digital VLSI Technology.

  • PDF

On spanning column rank of matrices over semirings

  • Song, Seok-Zun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.337-342
    • /
    • 1995
  • A semiring is a binary system $(S, +, \times)$ such that (S, +) is an Abelian monoid (identity 0), (S,x) is a monoid (identity 1), $\times$ distributes over +, 0 $\times s s \times 0 = 0$ for all s in S, and $1 \neq 0$. Usually S denotes the system and $\times$ is denoted by juxtaposition. If $(S,\times)$ is Abelian, then S is commutative. Thus all rings are semirings. Some examples of semirings which occur in combinatorics are Boolean algebra of subsets of a finite set (with addition being union and multiplication being intersection) and the nonnegative integers (with usual arithmetic). The concepts of matrix theory are defined over a semiring as over a field. Recently a number of authors have studied various problems of semiring matrix theory. In particular, Minc [4] has written an encyclopedic work on nonnegative matrices.

  • PDF

Inter-Conversion Matrix for Transcoding Block DCT and DWT-Based Compressed Images

  • Kim, Donggyun;Lim, Sanghee;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • This study derived the inter-conversion matrices, which can be used in heterogeneous image transcoding between the compressed images using different transforms, such as the $8{\times}8$ block discrete cosine transform (BDCT) and the one-level discrete wavelet transform (DWT). Basically, to obtain the one-level DWT coefficients from $8{\times}8$ BDCT, inverse BDCT should be performed followed by forward DWT, and vice versa. On the other hand, if the proposed interconversion approach is used, only one inter-conversion matrix multiplication makes the corresponding transcoding possible. Both theoretical and experimental analyses showed that the amount of computation of the proposed approach decreases over 20% when the inter-conversion matrices are used under specific conditions.

Space Deformation of Parametric Surface Based on Extension Function

  • Wang, Xiaoping;Ye, Zhenglin;Meng, Yaqin;Li, Hongda
    • International Journal of CAD/CAM
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • In this paper, a new technique of space deformation for parametric surfaces with so-called extension function (EF) is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of EF. Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or adding the multiplication of some vector and the operator matrix to the equation. Interactively modifying control parameters, ideal deformation effect can be got. The implementation shows that the method is simple, intuitive and easy to control. It can be used in such fields as geometric modeling and computer animation.

Strain Decomposition Method in Hull Stress Monitoring System for Container Ship

  • Park, Jae-Woong;Kang, Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • The hull monitoring systems of container ships with four long-base gages give enough information for identifying the hull girder loads such as bending and torsional moments. But such a load-identification for container ships has not been known. In this paper, a load-identification method is suggested in terms of a linear matrix equation that the measured strain vector equals to the multiplication of the transformation matrix and the desired strain component vector. The equation is proved to be mathematically complete by the property of positive-definite determinant of the transformation matrix. The method is applied to a hull stress monitoring system for 8100TED container ship during sea trial, and the estimated external loads illustrate reasonable results in comparison with the pre-estimated results. This moment decomposition concept has also been tested in real operation conditions. The typical phenomena over the Suez Canal illustrated very suitable results comparing with the physical understandings. Henceforth, one can effectively use the proposed concept to monitor the hull girder loads such as bending and torsional moments.

A Parallelising Algortithm for Matrix Arithmetics of Digital Signal Processings on VLIW Simulator (VLIW 시뮬레이터 상에서의 디지털 신호처리 행렬 연산에 대한 병렬화 알고리즘)

  • Song, Jin-Hee;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.1985-1996
    • /
    • 1998
  • A parallelising algorithm for partitioning and mapping methods of matrix/vector multiplication into linear processor array/VLW simulator is presented in this paper. First we discuss the mapping methods for input matrix or vector into the arbitrarily size of processor arrays. Then, we show partitioning the algorithmss of the large size of computational problem into the size of the processor array. We execute the algorithm on VLIW simuhator and show to effectiviness of algorithm. The result which we achived better parallelising performance on our VLIW simulator dsign than on linear processor array.

  • PDF

On Fast M-Gold Hadamard Sequence Transform (고속 M-Gold-Hadamard 시퀀스 트랜스폼)

  • Lee, Mi-Sung;Lee, Moon-Ho;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.93-101
    • /
    • 2010
  • In this paper we generate Gold-sequence by using M-sequence which is made by two primitive polynomial of GF(2). Generally M-sequence is generated by linear feedback shift register code generator. Here we show that this matrix of appropriate permutation has Hadamard matrix property. This matrix proves that Gold-sequence through two M-sequence and additive matrix of one column has one of major properties of Hadamard matrix, orthogonal. and this matrix show another property that multiplication with one matrix and transpose matrix of this matrix have the result of unit matrix. Also M-sequence which is made by linear feedback shift register gets Hadamard matrix property mentioned above by adding matrices of one column and one row. And high-speed conversion is possible through L-matrix and the S-matrix.