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Abstract: This study derived the inter-conversion matrices, which can be used in heterogeneous 
image transcoding between the compressed images using different transforms, such as the 8 8×  
block discrete cosine transform (BDCT) and the one-level discrete wavelet transform (DWT). 
Basically, to obtain the one-level DWT coefficients from 8 8×  BDCT, inverse BDCT should be 
performed followed by forward DWT, and vice versa. On the other hand, if the proposed inter-
conversion approach is used, only one inter-conversion matrix multiplication makes the 
corresponding transcoding possible. Both theoretical and experimental analyses showed that the 
amount of computation of the proposed approach decreases over 20% when the inter-conversion 
matrices are used under specific conditions.     

 
Keywords: Transcoding, Inter-conversion matrix, DCT, DWT  
 
 
1. Introduction 

Various video/image compressions techniques, such as 
H.26x, MPEG, Motion JPEG, Motion JPEG-2000, JPEG, 
and JPEG-2000, have been proposed and standardized. 
Each compression standard has been designed for a 
specific application. Recently, transcoding has attracted 
increasing attention for the efficient inter-conversion of 
differently compressed and coded image data [1-7]. 

The major objective of transcoding is to minimize the 
computation for differently coded image data by 
maximally utilizing the compressed data, such as the 
coding parameters and statistical information [1]. Although 
transcoding with the same video/image transformation 
requires a relatively small amount of computation, the 
amount of computation is very difficult to reduce by 
transcoding the compression using different 
transformations 

Block discrete cosine transformation (BDCT) and 
discrete wavelet transformation (DWT) are used widely for 
most video/image compression standards. The transcoding 
between JPEG and JPEG-2000, or between H.26x and 
Motion JPEG-2000 is the case using different 
transformations. In this case, the efficient inter-conversion 

of transform coefficients should be considered. Lan 
proposed fast BDCT followed by fast DWT for the inter-
conversion of the transform coefficients from BDCT to 
DWT [3]. On the other hand, the fast algorithms cannot be 
used for BDCT and DWT for hardware realization of the 
transcoder because of circuit complexity. In this case, it is 
efficient that perform the inter-conversion of the transform 
coefficients from one transform instead of the two 
transforms, which consists of one inverse transform 
followed by a forward transform. This paper presents a 
direct approach to the inter-conversion of BDCT and one-
level DWT coefficients. Without a loss of generality, an 
8 8×  BDCT and Daubechies D4 filter were used for DWT. 
Section 2 presents the matrix representations of 8 8×  
BDCT and one-level DWT. The mathematical justification 
for considering only one-level DWT is also shown in this 
section. Section 3 derives the conversion matrices for both 
BDCT-to-DWT and DWT-to-BDCT. The amount of 
computation for a straightforward approach and the 
proposed approach was compared in section 4, and section 
5 concludes the paper with future research issues. 
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2. Matrix Representation of BDCT and 
One-Level DWT 

This section briefly summarizes the matrix 
representation of 8 8×  BDCT and one-level DWT, and 
proves that two or higher-level DWT cannot be expressed 
by a matrix representation, which justifies that this work is 
focused on the inter-conversion between BDCT and one-
level DWT.  

2.1 Matrix Representation of 8x8 BDCT 
Let 8 8f ×  and 8 8F ×  be an 8 8×  array of the image and 

the corresponding DCT coefficients, respectively. If 8 8C ×  
represents the eight-point, one-dimensional (1D) DCT 
matrix, the forward and inverse DCTs can respectively be 
expressed in matrix-vector multiplication form as 

 
 8 8 8 8 8 8 8 8

TF C f C× × × ×=  and 8 8 8 8 8 8 8 8
Tf C F C× × × ×=  (1) 

 
where 8 8C ×  is defined as 
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For simplicity, if an input image of size 16 24×  is 

represented as 
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its DCT can be expressed as 
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By defining the 16 16×  DCT generation matrices as 
 

 8 8 8 8
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, (5) 

where 8 8O ×  represents the 8 8×  zero matrix, 16 24× DCT 
coefficients in (4) can be further simplified as 
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  (6) 
 

By generalizing the derivation for (6), the 8 8×  BDCT 
of an N M×  image, for both N  and M  multiples of eight, 
can be expressed as 
 

 T
N M N N N M M MF D f D× × × ×= . (7) 

 
In a similar manner, the IDCT can be derived and 

expressed as 
 

 T
N M N N N M M Mf D F D× × × ×= . (8) 

2.2 Matrix Representation of One-Level 
DWT 

Given a specific filter and a boundary processing 
method, both the forward and inverse DWTs can be 
expressed in a matrix-vector multiplication form. Without 
a loss of generality, by adopting Daubechies DB-4 filter 
and assuming periodic boundary, the corresponding 6 8×  
forward and inverse DWTs are derived below. 

The DB-4 lowpass filter for analysis and synthesis is 
defined as 
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4 2 4 2 4 2 4 2

h h h+ + − −
= = = =h , 

  (9) 
 
and its highpass version can be expressed as 
 
 [0] [3], [1] [2], [2] [1], and [3] [0]g h g  - h g  h g  - h= = = = . 
  (10) 
 

Let 6 6U ×  and 8 8U ×  be the 1D forward DWT matrices of 
the size six and eight, respectively, as 
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  (11) 
 
Using (11), the 6 8×  forward DWT, which is denoted 

as 6 8W × , is expressed as 
 

 6 8 6 6 6 8 8 8
TW U f U× × × ×= . (12) 

 
In a similar manner of the IDCT given in (8), the 6 8×  

inverse DWT can be given as 
 

 6 8 6 6 6 8 8 8
Tf V W V× × × ×= , (13) 

 
where the 1D inverse DWT matrices of size six and eight 
are defined as 
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  (14) 
 
For a general N M×  image, the forward and inverse 

DWT can be expressed as 
 

 T
N M N N N M M MW U f U× × × ×= , (15) 

 
and 

 

 T
N M N N N M M Mf V W V× × × ×= , (16) 

 
respectively. 

2.3 Consideration of the Higher-Level 
DWT 

Let the one-level DWT of a 16 16×  image be 
expressed as 
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where ( )16 16 1U ×  and ( )16 16 1 TU ×  represent one-level DWT 
matrices in the column and row directions, respectively, 
and 8 8a × , 8 8b × , 8 8c × , and 8 8d ×  represent the LL, HL, LH, 
and HH subbands, respectively. 

To convert the two-level DWT directly into the DCT 
and vice versa, ( )16 16 2W ×  should be expressed as 
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Because the second-level DWT is performed only for 

the LL subband, (18) can be rewritten as 
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If it is assumed that there are ( )16 2U  and ( )16 2 TU  that 

satisfy (18) and (19), they can be derived as 
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Let ( )16 16 2U ×  be divided into four sub-matrices as 
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Hence, Eq. (20)(20) can then be rewritten as 
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By comparing the four submatrices in both sides of 

(22), the following four relationships can be obtained: 
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  (23) 
The first equation in (23) results in 
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8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8(1), and  T T Tx U x b y y c x y d y o× × × × × × × × × × × ×= + + = , 
  (24) 

 
where 8 8o ×  represents the 8 8×  zero matrix. The second 
equation in (23) results in 
 
 1

8 8 8 8 8 8 8 8(1)Tw c U c− −
× × × ×= , (25) 

 
and 
 
 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8z T T Ta x z b y w d y o× × × × × × × × × ×+ + = . (26) 

 
From (26), 8 8w × , which is a submatrix of ( )16 16 2U × , 

depends on 8 8c × , which is the LH subband of the one-level 
DWT. This means a two-level DWT matrix changes 
according to the input image. As a result, it is impossible 
to make a fixed DWT matrix for two or higher levels.  

3. Inter-Conversion Matrices 

3.1 Matrix Representation of 8x8 BDCT 
The straightforward approach to BDCT-to-DWT inter-

conversion can be expressed as 
 

 T T
N M N N N N M M M MW U D F D U× × × ×= . (27) 

 
Let T

N N N N NA U D× ×= , and T T
M M M M MA D U× ×=  (27) can 

then be simplified as  
 

 T
N M N N N M M MW A F A× × × ×= , (28) 

 
where N NA ×  and T

M MA ×  are computed by the column-wise 
DWT of T

N ND ×  and the row-wise DWT of M MD × , 
respectively. Given the two matrices, the N NA ×  and T

M MA × , 
8 8×  BDCT coefficients can be converted directly to one-
level DWT coefficients. As a result, we can consider these 
two matrices can be considered to be the BDCT-to-DWT 
inter-conversion matrices. 

3.2 Matrix Representation of 8x8 BDCT 
The process of DWT-to-BDCT inter-conversion is 

similar to BDCT-to-DWT inter-conversion. Using (7) and 
(16), the straightforward approach to DWT-to-BDCT 
inter-conversion is expressed as 

 
 T T

N M N N N N M M M MF D V W V D× × × ×= . (29) 
 
Let N N N N NB D V× ×= , and T T T

M M M M MB V D× ×= , then (29) 
can be expressed as 

 
 T

N M N N N M M MF B W B× × × ×= , (30) 

where these two matrices play the role of DWT-to-BDCT 
inter-conversion. 

4. Comparative analysis of computational 
Amount 

This section compares the amount of computation 
between the straightforward approach and the proposed 
approach, which uses a one-step matrix multiplication of 
the BDCT-to-DWT and DWT-to-BDCT inter-conversion. 
To count the number of operations in the straightforward 
approach, the fast algorithms for DWT and DCT were not 
considered; only the multiplications with nonzero 
coefficients were considered. On the other hand, in the 
proposed approach, the size of the 8 8×  BDCT matrix and 
the one-level DWT matrix were fixed to M M× , where 
M is a multiple of 8 and is greater than or equal to 16. In 
particular, for the DWT Daubechies DB-4 filter and 
assume periodic boundary were used. 

4.1 Analysis of the Straightforward 
Approach 

To estimate the amount of computation of the 
straightforward approach, it is important to simply add the 
amount of computation of 8 8×  BDCT and one-level 
DWT. 

The 1D DCT length 8 requires 64 (= 8 8× ) 
multiplications and 56 (= 7 8× ) additions. The 2D DCT of 
size 8 8×  requires 1024 (= 64 16× ) multiplications and 
896 (= 56 16× ) additions, because an 8 8× DCT requires 
16 times more operations than a 1D DCT of length 8. The 
8 8×  BDCT of an N M×  image (N and M are multiples 
of 8) requires ( / 8) ( / 8)N M×  times more operations than 
a 2D 8 8× DCT. Therefore, the number of multiplications 
needed for 8 8×  BDCT of an N M×  image is given as 

 
 ( / 8) ( / 8) 1024N M× × , (31) 

 
and the corresponding number of additions is given as 
 
 ( / 8) ( / 8) 896N M× × . (32) 

 
The amount of computation for an 8 8×  inverse BDCT 

is equal to that of the forward version. 
Without including multiplications with zero 

coefficients, the amount of computation in a matrix-vector 
multiplication form in (7) and (8) is equal to (31) and (32), 
respectively. 

To examine the amount of computation for a one-level 
DWT, let the number of analysis lowpass and highpass 
filter coefficients be al and ah, respectively, and the 
numbers of synthesis lowpass and highpass filter 
coefficients be sl and sh, respectively. The amount of 
computations of 1D, one-level DWT of length N is given 
as 
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( ) ( )

( ) ( )

Forward 1D 1-level DWT
: / 2, : 2 / 2

Inverse 1D 1-level DWT
: / 2, : 4 / 2

MUL al ah N ADD al ah N

MUL sl sh N ADD sl sh N N

< >

+ + −

< >

+ + − +

. 

  (33) 
 
(33) is satisfied by not only the Daubechies DB-4 filter 

but also an arbitrary filter. On the other hand, (33) has a 
restriction that the volume of data that is transformed must 
be even. The 2D, one-level DWT of an N M×  image (N 
and M are multiples of 2) is equal to M times the column-
wise 1D DWT of length N followed by N times 1D, and 
DWT of length M. Therefore, the amount of computation 
for 2D, one-level DWT of an N M×  image is given as 

 

( ) ( )

( ) ( )

Forward 2D 1-level DWT
: , : 2

Inverse 2D 1-level DWT
: , : 4 2

MUL al ah MN ADD al ah MN

MUL sl sh MN ADD sl sh MN MN

< >

+ + −

< >

+ + − +

. 

  (34) 
 

where the amount of computation is equal to the amount of 
computation for (15) and (16) without including 
multiplications with zero coefficients. 

The straightforward approach for the BDCT-to-DWT 
inter-conversion performs a forward one-level DWT after 
an 8 8×  inverse BDCT of the given 8 8×  BDCT 
coefficients. Using (31), (32) and (34), the number of 
computations needed for BDCT-to-DWT of a N M× data, 
is given as 

 

 
( )
( )

: ( / 8) ( / 8) 1024 ,

: ( / 8) ( / 8) 896 2

MUL N M al ah MN

ADD N M al ah MN

× × + +

× × + + −
. (35) 

 
In a similar manner, the number of computations for 

DWT-to-BDCT of a N M× data using straightforward 
approach can be derived as 

 

 
( )
( )

: ( / 8) ( / 8) 1024,

: 4 2 ( / 8) ( / 8) 896

MUL sl sh MN N M

ADD sl sh MN MN N M

+ + × ×

+ − + + × ×
. 

  (36) 

4.2 Number of Computations of the 
Proposed Approach 

The number of computations of straightforward 
approach in the above subsection is equal to the number of 
computations needed for matrix-vector multiplication in 
(7), (8), (15), and (16) without considering the 
multiplications with zero coefficients. In the other hand, it 
is reasonable to consider and exclude multiplications with 
zero coefficients, which does not require any real 
computations. 

To calculate the inter-conversion matrices, A and B, for 
a special case, it was assumed that the image is square and 
its height is greater than or equal to 16 and is a multiple of 

8 ( ,  16,  24,  32,  M M M× = ). In addition, the 
Daubechies DB-4 filter with periodic boundary was used 
for convolution-based DWT. In this case, the inter-
conversion matrices, A and B, are given as 

 

 

4 8 3 8

3 8 1 8

1 8 4 8
16 16 16 16

4 8 3 8

3 8 1 8

1 8 4 8

T

a O
O a
a a

A B
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⎡ ⎤
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⎢ ⎥⎣ ⎦

, (37) 
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, and (38) 

 

4 8 3 8 4 8 4 8
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4 8 4 8 1 8 3 8
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32 32 32 32
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4 8 4 8 4 8 3 8
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T

a O O O
O a O O
O a a O
O O a a
a O O a

A B
b O O O
O b O O
O b b O
O O b b
b O O b

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×
× ×

× × × ×
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× × × ×

× × × ×
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥= =
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (39) 

 
In (37), (38) and (39), 4 8O ×  and 3 8O ×  represent zero 

matrices, and 4 8a × , 1 8a × , 4 8b ×  and 1 8b ×  are as follows. 
(Here, all the elements are calculated down to five decimal 
places and rounded.) 

 

4 8

0.5 0.6343 0.4001 0.0452 -0.25 -0.308 -0.1657 -0.0286
0.5 0.2298 -0.5576 -0.4704 0.25 0.3143 -0.0396 -0.0457
0.5 -0.3092 -0.4001 0.6200 -0.25 0.3143 0.1657 -0.036

0.4665 -0.6110 0.4788 -0.3007 0.125 0.0045 -0.063 0.0526

a ×

⎡ ⎤
⎢
⎢=
⎢
⎢
⎣

⎥
⎥
⎥
⎥
⎦

, 

  (40) 
[ ]1 8 0.0335 0.0561 0.0788 0.1058 0.125 0.1257 0.1027 0.0578a × = , 

  (41) 

4 8

0 0.0286 -0.0396 -0.308 -0.433 -0.0452 0.5576 0.6343
0 -0.0053 -0.1657 0.1213 0.433 -0.4065 -0.4001 0.6671
0 -0.036 0.0396 0.1365 -0.433 0.62 -0.5576 0.3092

0.125 0.1637 -0.1283 0.0806 -0.0335 -0.0012 0.0169 -0.0141

b ×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢
⎢
−⎣ ⎦

⎥
⎥

, 

  (42) 
and 
 

[ ]1 8 0.125 0.2094 0.294 0.3949 0.4665 0.4692 0.3832 0.2158b × =  
  (43) 

 
In (37), (38) and (39), A is equal to TB . This is 
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because V is equal to TU  in (15) and (16) when the 
DWT is considered using a Daubechies DB-4 filter with a 
periodic boundary. In addition, A and TB  are expanded 
with a specific pattern by looking through (37), (38) and 
(39). Consequently, the composition of the matrix, A and 

TB , can be deduced when the size of the matrix is 
greater than 32 32× , and using (28) and (30), the amount 
of computation can be determined using the inter-
conversion matrix when the matrix size is 

 ( 16,  24,  32,  )M M M× = . The result is given as 
 

 2 2: 20 , :18MUL M ADD M . (44) 
 
In (44), M  is a multiple of 8 and greater than or equal 

to 16. The amount of computation in (44) was also 
obtained without considering multiplication with zero 
coefficients in (28) and (30). 

To compare with the amount of computation between 
the straightforward and proposed approaches, we apply the 
assumptions given in (35) and (36), which result in 
 
 2 2: 24 , : 20MUL M ADD M . (45) 

 
A comparison of (44) and (45) showed that the 

proposed approach reduced amount of computation 
significantly compared to the straightforward version. 

4. Conclusion 

In this paper, the matrix representation was derived for 
the BDCT-to-DWT and the DWT-to-BDCT inter-
conversion. Based on the practical consideration the 2D, 
8 8×  BDCT and one-level DWT, was used to compare the 
amount of computation between the straightforward and 
proposed approaches. The proposed approach presents the 
inter-conversion matrices for BDCT-to-DWT and DWT-
to-BDCT. Based on an analysis of both approaches, we 
confirmed that the proposed approach requires more than 
20% less computation. This observation coincides with the 
main purpose of transcoding that the conversion of 
compression format should be performed with as small 
amount of computation as possible. Although the fast 
algorithms for DCT and DWT, were not considered for the 
comparison, the fast version of the proposed approach will 
be developed in future research. The proposed inter-
conversion method can be a theoretical background for 
transcoding the DCT-based H.26x and the DWT-based 
JPEG-2000 compression standards. 

An automatic field-adaptive focal length estimation 
method was presented for correcting the fisheye lens 
distorted images. The proposed method divides the 
corrected crop image of the input image into ten fields, and 
estimates the focal length for characterizing the 
orthographic projection model. The proposed algorithm 
can accurately calibrate the distortion made by the wide 
angle lens, and can be applied to a range of imaging 
systems. 
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