• Title/Summary/Keyword: Matrix Metalloproteinase(MMP)

Search Result 634, Processing Time 0.023 seconds

Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells (인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향)

  • Hong, Tae-Hwa;Shin, Soyeon;Han, Seung-Hyeon;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.945-954
    • /
    • 2018
  • Omega-3 polyunsaturated fatty acids (${\omega}3$-fatty acid) have been found to possess anticancer properties in a variety of cancer cell lines and animal models, but their effects in human tongue squamous cell carcinomas (SCCs) remain unclear. This study was designed to examine the effect of ${\omega}3$-fatty acid desaturase (fat-1) gene expression on invasion and tumorigenicity in human tongue SCC cells and the molecular mechanism of its action. Docosahexaenoic acid (DHA) treatment inhibited in vitro invasion in a dose-dependent manner. In zymography, matrix metalloproteinase-9 (MMP-9) and Matrix metallopeptidase-2 (MMP-2) activities were reduced, and MMP-9 and MMP-2 promoter activities were inhibited by the DHA treatment. In addition, cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) promoter reporter activities were inhibited in SCC-4 and SCC-9 cells after the DHA treatment. To investigate the effect of a high level of endogenous ${\omega}3$ fatty acids, a stable SCC-9 cell line expressing the ${\omega}3$-desaturase gene (fSCC-9sc) was generated. The growth rate and colony-forming capacity of fSCC-9sc were remarkably decreased as compared with those of fSCC-9cc. Likewise, the tumor size and volume of fSCC-9sc implanted into nude mice were significantly inhibited, with increases in the cell death index. Furthermore, a transwell chamber invasion assay showed a reduction in cell invasion of the fSCC-9sc lines when compared with that of the fSCC-9cc line. These findings suggested that fat-1 gene expression inhibited tumorigenicity, as well as invasion in human tongue SCC cells. Thus, utilization of ${\omega}3$ fatty acids may represent a promising therapeutic approach for chemoprevention and the treatment of human tongue SCCs.

The Relationship between Expression of EGFR, MMP-9, and C-erbB-2 and Survival Time in Resected Non-Small Cell Lung Cancer (수술을 시행한 비소세포 폐암 환자에서 EGFR, MMP-9 및 C-erbB-2의 발현과 환자 생존율과의 관계)

  • Lee, Seung Heon;Jung, Jin Yong;Lee, Kyoung Ju;Lee, Seung Hyeun;Kim, Se Joong;Ha, Eun Sil;Kim, Jeong-Ha;Lee, Eun Joo;Hur, Gyu Young;Jung, Ki Hwan;Jung, Hye Cheol;Lee, Sung Yong;Lee, Sang Yeub;Kim, Je Hyeong;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa;Kim, Chul Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.286-297
    • /
    • 2005
  • Background : Non-small cell lung cancer (NSCLC) is a common cause of cancer-related death in North America and Korea, with an overall 5-year survival rate of between 4 and 14%. The TNM staging system is the best prognostic index for operable NSCLC . However, epidermal growth factor receptor (EGFR), matrix metalloproteinase-9(MMP-9), and C-erbB-2 have all been implicated in the pathogenesis of NSCLC and might provide prognostic information. Methods : Immunohistochemical staining of 81 specimens from a resected primary non-small cell lung cancer was evaluated in order to determine the role of the biological markers on NSCLC . Immunohistochemical staining for EGFR, MMP-9, and C-erbB-2 was performed on paraffin-embedded tissue sections to observe the expression pattern according to the pathologic type and surgical staging. The correlations between the expression of each biological marker and the survival time was determined. Results : When positive immunohistochemical staining was defined as the extent area>20%(more than Grade 2), the positive rates for EGFR, MMP-9, and C-erbB-2 staining were 71.6%, 44.3%, and 24.1% of the 81 patients, respectively. The positive rates of EGFR and MMP-9 stain for NSCLC according to the surgical stages I, II, and IIIa were 75.0% and 41.7%, 66.7% and 47.6%, and 76.9% and 46.2%, respectively. The median survival time of the EGFR(-) group, 71.8 months, was significantly longer than that of the EGFR(+) group, 33.5 months.(p=0.018, Kaplan-Meier Method, log-rank test).. The MMP-9(+) group had a shorter median survival time than the MMP-9(-) group, 35.0 and 65.3 months, respectively (p=0.2). The co-expression of EGFR and MMP-9 was associated with a worse prognosis with a median survival time of 26.9 months, when compared with the 77 months for both negative-expression groups (p=0.0023). There were no significant differences between the C-erbB-2(+) and C-erbB-2 (-) groups. Conclusion : In NSCLC, the expression of EGFR might be a prognostic factor, and the co-expression of EGFR and MMP-9 was found to be associated with a poor prognosis. However, C-erbB-2 expression had no prognostic significance.

The Effect of Interferon-γ on Bleomycin Induced Pulmonary Fibrosis in the Rat (Interferon-γ 투여가 쥐에서의 Bleomycin 유도 폐 섬유화에 미치는 영향)

  • Yoon, Hyoung Kyu;Kim, Yong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.1
    • /
    • pp.51-66
    • /
    • 2004
  • Objectives : The matrix metalloproteinases (MMPs) that participate in the extracellular matrix metabolism play a important role in the progression of pulmonary fibrosis. The effects of the MMPs are regulated by several factors including Th-1 cytokines, $interferon-{\gamma}$ ($IFN-{\gamma}$). Up to now, $IFN-{\gamma}$ is known to inhibit pulmonary fibrosis, but little is known regarding the exact effect of $IFN-{\gamma}$ on the regulation of the MMPs. This study investigated the effects of $interferon-{\gamma}$ on the pulmonary fibrosis and the expression of the lung MMP-2,-9, TIMP-1,-2, and Th-2 cytokines in aa rat model of bleomycin induced pulmonary fibrosis. Materials and methods : Male, specific pathogen-free Sprague-Dawley rats were subjected to an intratracheal bleomycin instillation. The rats were randomized to a saline control, a bleomycin treated, and a bleomycin+$IFN-{\gamma}$ treated group. The bleomycin+$IFN-{\gamma}$ treated group was subjected to an intramuscular injection of $IFN-{\gamma}$ for 14 days. At 3, 7, 14, and 28 days after the bleomycin instillation, the rats were sacrificed and the lungs were harvested. In order to evaluate the effects of the $IFN-{\gamma}$ on lung fibrosis and inflammation, the lung hydroxyproline content, inflammation and fibrosis score were measured. Western blotting, zymography and reverse zymography were performed at 3, 7, 14, 28 days after bleomycin instillation in order to evaluate the MMP-2,-9, and TIMP-1,-2 expression level. ELISA was performed to determine the IL-4 and IL-13 level in a lung homogenate. Results : 1. 7 days after bleomycin instillation, inflammatory changes were more severe in the bleomycin+$IFN-{\gamma}$ group than the bleomycin group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$2.08{\pm}0.15:2.74{\pm}0.29$, P<0.05), but 28 days after bleomycin instillation, lung fibrosis was significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$3.94{\pm}0.43:2.64{\pm}0.13$, P<0.05). 2. 28 days after bleomycin instillation, the lung hydroxyproline content was significantly reduced as a result of $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$294.04{\pm}31.73{\mu}g/g:194.92{\pm}15.51{\mu}g/g$, P<0.05). 3. Western blotting showed that the MMP-2 level was increased as a result of the bleomycin instillation and highest in the 14 days after bleomycin instillation. 4. In zymography, the active forms of MMP-2 were significantly increased as a result of the $IFN-{\gamma}$ treatment 3 days after the bleomycin instillation, bleomycin+$IFN-{\gamma}$ group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$209.63{\pm}7.60%:407.66{\pm}85.34%$, P<0.05), but 14 days after the bleomycin instillation, the active forms of MMP-2 were significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$159.36{\pm}20.93%:97.23{\pm}12.50%$, P<0.05). 5. The IL-4 levels were lower in the bleomycin and bleomycin+$IFN-{\gamma}$ groups but this was not significant, and the IL-13 levels showed no difference between the experiment groups. Conclusion : The author found that lung inflammation was increased in the early period but the pulmonary fibrosis was inhibited in the late stage as a result of $IFN-{\gamma}$. The inhibition of pulmonary fibrosis by $IFN-{\gamma}$ appeared to be associated with the inhibition of MMP-2 activation by $IFN-{\gamma}$. Further studies on the mechanism of the regulation of MMP-2 activation and the effects of MMP-2 activation on pulmonary fibrosis is warranted in the future.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia

  • Lee, Kyung-Eon;Cho, Kyung-Ok;Choi, Yun-Sik;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 2016
  • Ampicillin, a ${\beta}$-lactam antibiotic, dose-dependently protects neurons against ischemic brain injury. The present study was performed to investigate the neuroprotective mechanism of ampicillin in a mouse model of transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral common carotid artery occlusion for 40 min. Before transient forebrain ischemia, ampicillin (200 mg/kg, intraperitoneally [i.p.]) or penicillin G (6,000 U/kg or 20,000 U/kg, i.p.) was administered daily for 5 days. The pretreatment with ampicillin but not with penicillin G significantly attenuated neuronal damage in the hippocampal CA1 subfield. Mechanistically, the increased activity of matrix metalloproteinases (MMPs) following forebrain ischemia was also attenuated by ampicillin treatment. In addition, the ampicillin treatment reversed increased immunoreactivities to glial fibrillary acidic protein and isolectin B4, markers of astrocytes and microglia, respectively. Furthermore, the ampicillin treatment significantly increased the level of glutamate transporter-1, and dihydrokainic acid (DHK, 10 mg/kg, i.p.), an inhibitor of glutamate transporter-1 (GLT-1), reversed the neuroprotective effect of ampicillin. Taken together, these data indicate that ampicillin provides neuroprotection against ischemia-reperfusion brain injury, possibly through inducing the GLT-1 protein and inhibiting the activity of MMP in the mouse hippocampus.

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo;Tae-Hyeon Kim;Kyeong-Rok Kang;HyangI Lim;Moon-Chang Choi;Do Kyung Kim;Hong Sung Chun;Heung-Joong Kim;Sun-Kyoung Yu;Jae-Sung Kim
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.245-255
    • /
    • 2023
  • This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Inhibitory Effect of Ophioglossum vulgatum on Free Radical and MMP Expression in UV-irradiated Human Dermal Fibroblasts (병이소초 추출물의 항산화 및 MMP 발현 저해 효과)

  • Kim, Jin-Hwa;Oh, Jung-Young;Lee, Geun-Soo;Zhang, Yong-He;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • Human skin is constantly exposed to environmental irritants such as smoke, chemicals and ultraviolet (UV). Free radicals and reactive oxygen species (ROS) caused by these environmental irritants play critical roles in cellular damage. In this study, to investigate the skin cell protective effect of Ophioglossum vulgatum extract, we investigated its effects on intercellular antioxidative activity and UVA-induced MMP expression in human dermal fibroblasts (HDFs). The dried O. vulgatum was extracted in a mixture of ethanol and water (1 : 1) for 24 h at room temperature. The extract was filtered and concentrated in vacuo and lyophilized. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB $20\;mJ/cm^2$. After treatment of O. vulgatum extracts, intracellular ROS levels were measured by luminescence spectrophotometer. Enzyme linked immuno sorbent assay (ELISA), and RT-PCR techniques were used for evaluating the effects of O. vulgatumon on MMP protein and mRNA expression in UVA irradiated HDFs. O. vulgatum extract was found to have ROS scavenging activity with the $IC_{50}$ values of $18.2\;{\mu}g/mL$ against superoxide radicals in the xanthine/xanthine oxidase system. After treatment of O. vulgatum extracts, the oxidation of CM-DCFDA was inhibited effectively and O. vulgatum extracts showed a potent free radical scavenging activity by 30.4 % at $100\;{\mu}g/mL$ in UVB-irradiated HDFs. UVA induced MMP protein expression was reduced 37.7 % by treatment with O. vulgatum extract, and MMP-1 mRNA expression was reduced in a dose-dependent manner. Taken together, these results suggest that O. vulgatum extract prevents the skin cell damage induced by UV irradiation, and implies that O. vulgatum extract may be useful as a new ingredient for anti-aging cosmetics.

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo;Kim, Sung Hyeok;Lee, Sung Ryul;Jang, Sohee;Namkoong, Seung;Hong, Sungsil;Lim, Hyosun;Kim, Youn Kyu;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.604-614
    • /
    • 2020
  • Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats (당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제)

  • Jo, Min-Seop;Yoo, Ki-Dong;Park, Chan-Beom;Cho, Deog-Gon;Cho, Kue-Do;Jin, Ung;Moon, Kun-Woong;Kim, Chul-Min;Wang, Young-Pil;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.264-272
    • /
    • 2007
  • Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.