고검화도(98%이상)의 폴리(비닐 알코올)(PVA)를 디메틸설폭사이드(DMSO) 용매에 녹인 뒤 PVA 준희박 용액 대에서 농도 $C{\simeq}0.14\;g/mL$까지 점성도를 측정하였으며, 이 시스템을 매트릭스로 하여 폴리스티렌(PS) 라텍스 입자의 확산운동 지연을 동적 광산란법으로 조사하였다. PVA/DMSO계의 점성도를 고유점성도 $[{\eta}]$로 스케일된 환산농도 $C[{\eta}]$에 대하여 도시하였을 때 C$[{\eta}]$ >2에서는 분자량 의존성이 강하게 나타났으며, 그 원인은 PVA 용액 내에 존재하는 불균일 영역때문인 것으로 추정하였다. 그러나 매트릭스 내에서 탐침입자의 확산운동은 모든 측정농도에서 단일모드로 관찰되었고, 용액상 및 용매상에서의 확산계수의 비인 D/Do를 $C[{\eta}]$로 도시할 때 전체 농도 범위에서 분자량 의존성은 전혀 나타나지 않았으나 신장지수함수의 적용 한계는 C$[{\eta}]$ >2.5인 것으로 관찰되었다.
TRIGA Mark II와 III 원자로의 여러가지 가동조건에 있어서 노벽으로 부터의 누설 ${\gamma}$선에 의한 조사선양률을 3"$\times$3"원통형 NaI(T1) 섬광계수기와 400 channel파 고분석장치로 측정하였는데 측정된 spectrum으로부터 조사선양률을 산출하는데는 실제적면에서 복잡하기 짝이 없는 response matrix 방법대신 정도가 좋으면서도 비교적 그 과정이 단순한 Moriuchi의 specturm -조사선양률 환산 이론을 적용하였다. 연구결과에 따르면 노심에서 발생된 누설 ${\gamma}$선의 기본적인 spectrum 형태는 원자로의 열출력이나 차장벽에 의한 강도의 감쇠에 별로 영향을 받지 않고 있으며 원자로 누설${\gamma}$선에 의란 전조사선양률의 공기중에서의 감쇠는 폭 넓은 energy분포에도 불구하고 지수함수적 감쇠를 하고 있음이 판명되있다. 이 전조사선양률은 원자로의 열출력에 대체로 비례하고 있으나 TRIGA Mark III과 같은 가동형노심의 경우는 측정된 spectrum이 매우 다양한바, 그로부터 산출된 전조사선양률의 크기에는 관계없이, spectrum 분해방법을 적용하여 노심에서 발생된 누설 ${\gamma}$선과 원자로가동중 발생되는 여지 ${\gamma}$선의 기여를 판별 해석하는데 성공하였다.
Closed-form 그린함수를 사용하여 다층 평판 구조체의 산란 문제를 해석할 경우, 주된 어려운 문제점 중의 하나의 대각행렬 요소의 계산결과가 느리게 수렴하고 안정되지 않다는 점이다. 즉, 대각행렬 요소 계산시 전원 자신의 항에 해당되는 $e^{-jkr}/{\gamma}$ 형태의 특이 적분처리를 했음에도 불구하고 계산결과의 느린 수렴도 문제가 몇 개의 복소 영상항에 해당하는 적분과정에 여전히 남아있음을 알 수 있었다. 이와 같은 문제점을 해소하기 위해, 일반화된 지수함수와 2중적분을 극좌표계에서 가우스 구적법을 사용하여 계산할 수 있는 새로운 적분 기법을 제시하고자 한다. 새로운 적분기법을 알로리즘의 안정성과 수렴도에 관하여 본 논문에서 논의되면, 그 타당성을 확인하기 위해 마이크로스트립 패치 안테나의 산란 문제에 이 적분법을 적용해 보았다.
본 논문에서는 입력에 제한이 있는 시간지연 비선형 시스템에 대한 퍼지 $H_2/H_{\infty}$ 제어기 설계 방법을 제시한다. 포화입력을 갖는 시간지연 비선형 시스템을 시간지연과 포화입력을 갖는 Takagi-Sugeno 퍼지 모델로 표현하고 병렬분산보상(PDC)의 개념을 이용하여 제어기를 설계한다. Lyapunov 함수를 이용하여 시간지연과 포화입력을 갖는 $H_2/H_{\infty}$ 퍼지모델에 대한 폐루프 시스템의 안정성 조건과 LQ 성능을 최소화하는 조건을 유도하고, 퍼지 $H_2/H_{\infty}$ 제어기가 존재할 충분조건을 선형행렬부등식(LMI: liner matrix inequality)을 이용하여 구한다. 제어기는 선형행렬부등식의 해를 구하므로써 바로 구할 수 있으며, 설계된 퍼지 $H_2/H_{\infty}$ 제어기는 $H_{\infty}$ 노옴 한계값을 만족하면서 LQ성능의 상한값을 최소화한다. 마지막으로 포화압력으로 포화압력을 가지는 시간지연 비선형 시스템에 대해 퍼지 $H_2/H_{\infty}$ 제어기 설계 사례를 보인다.
In this study we consider a flow line CONWIP system in which two types of product are produced. The processing times of each product type at each station follow an independent exponential distribution and the demands for the finished products of each type arrive according to a Poisson process. The demands that are not satisfied instantaneously are either backordered or lost according to the number of unsatisfied demands that exist at their arrival instants. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts of each product type at each station, mean waiting times of backordered demands and the proportion of backordered demands. For the analysis of the proposed CONWIP system, we model the CONWIP system as a two class closed queueing network with a synchronization station and analyze the closed queueing network using a product-form approximation method for multiple classes developed by Baynat and Dallery. In the approximation method, each subsystem is analyzed using a matrix geometric method. Comparisons with simulation show that the approximation method provides fairly good results for all performance measures.
단계형 확률분포는 마코프 체인이 특정 상태로 흡수되는 시점까지 거쳐가는 여러 단계에서 체재하는 시간들의 합으로 정의되며 대기행렬 시스템과 신뢰성 분석 모형 등에 광범위하게 사용된다. 연속적 단계형 분포의 경우 흡수 상태로 진입하기까지 거쳐가는 각각의 단계에서의 체재 시간이 지수분포를 따르므로 연속적 단계형 분포는 다양한 지수분포들의 합 또는 볼록 결합으로 나타낼 수 있다. 단계형 분포를 생성하는 가장 일반적이면서도 직관적인 방법은 마코비안 표현방법이라 불리는 초기 확률벡터와 전이 생성행렬에 의해 주어지는 조건부 확률을 이용하는 것이다. 적률이 주어진 상황에서 단계형 변수를 생성하는 방법에 대한 기존의 연구들은 대부분 적률을 마코비안 표현방법으로 변환하는 것을 전제로 하고 있다. 본 연구에서는 적률을 마코비안 표현방법으로 변환하지 않고 확률 분포함수를 결정하여 단계형 확률변수를 생성하는 방법에 대해 살펴보고 마코프 표현을 사용하는 기존의 방법 대신에 조단 분해법과 최소 표현 라플라스 변환을 이용하여 2계 단계형 확률변수를 분포함수를 결정하는 공식과 절차를 제시한다. 이러한 접근 방법은 고차원의 단계형 확률분포를 이용하여 대기행렬의 시뮬레이션을 하는 경우에 마코비안 표현방법의 전이행렬을 결정하여 변수를 생성하는 경우보다 효율적이다.
This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.
Functionally Graded Materials (FGM) as advanced heterogeneous composite materials have a higher performance than a conventional composite or bimaterial composite under some severe environments. As a heterogeneous material, FGM is commonly used in spacecraft, defense, nuclear and automotive industries due to its excellent properties. The purposes of this study are to evaluate the stress distribution and crack behaviors by the multiscale simulation. FGM contains two or more than two materials that the composition is structured continuously. Two types of FGM model are suggested, which are created by arbitrary prediction of the volume fraction and the exponential function. Aluminum as the metal matrix constituent and silicon carbide as the ceramic particle constituent are structured gradually by two types and the three point bending test also estimated. Moreover, two kinds of crack location were introduced in order to get the influences of material property distribution on the stress intensity factor. From the results we found that the stress intensity factors are increased in the case from softer to stiffer material, while vice versa.
In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.
본 논문에서는 불확실성을 갖는 비선형 시스템의 출력 궤환 퍼지 H∞ 제어 문제를 고려한다. 비선형 시스템은 Takagi-Sugeno(T-S) 퍼지모델로 나타내고 제어기 설계는 퍼지모델을 이용하여 설계한다. Lyapunov 함수를 이용하여 퍼지모델에 대한 폐-루프 시스템의 안정성뿐만 아니라 외란감쇠에 대한 L₂ 이득 성능을 보장하는 충분조건을 유도한다. 유도된 조건식 으로부터 퍼지 H∞ 제어기가 존재할 충분조건을 선형 행렬부등식으로 나타내고, 이 선형 행렬부등식의 해로부터 제어기를 설계하는 알고리듬을 제시한다. 설계된 제어기는 비선형이며 퍼지 동작에 의해 자동적으로 조정된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.