Browse > Article
http://dx.doi.org/10.12989/sem.2018.67.4.403

Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Habibi, Sajjad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Publication Information
Structural Engineering and Mechanics / v.67, no.4, 2018 , pp. 403-415 More about this Journal
Abstract
In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.
Keywords
nonlinear dynamic response; multiscale nanocomposite; carbon nanotube; thermal environment; finite element method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36(4), 1371-1394.   DOI
2 Zhang, Y.C. and Wang, X. (2006), "Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system", J. Reinf. Plast. Compos., 25(1), 71-88.   DOI
3 Zhu, J., Taylor, Z. and Zienkiewicz, O. (2005), "The finite element method: its basis and fundamentals", Butterworth-Heinemann Burlington, VT.
4 Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin Wall. Struct., 44(8), 852-860.   DOI
5 Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725.   DOI
6 Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Euro. Phys. J. Plus, 131(5), 1-19.   DOI
7 Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690.   DOI
8 Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Euro. Phys. J. Plus, 131(8), 279.   DOI
9 Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101.   DOI
10 Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta Mechanica, 223(7), 1371-1383.   DOI
11 Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
12 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215.   DOI
13 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225.   DOI
14 Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
15 Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
16 Ebrahimi, F. and Barati, M.R. (2016i). A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792.   DOI
17 Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196.   DOI
18 Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 1-16.
19 Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Euro. Phys. J. Plus, 131(7), 1-14.   DOI
20 Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.
21 Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182.   DOI
22 Grover, N., Singh, B.N. and Maiti, D.K. (2013), "New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates", AIAA J., 51(8), 1861-1871.   DOI
23 El Meiche, N., Tounsi, A., Ziane, N. and Mechab, I. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247.   DOI
24 Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143.   DOI
25 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564.
26 Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., Van Vuure, A.W., ... and Verpoest, I. (2009), "Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites", Carbon, 47(12), 2914-2923.   DOI
27 Green, K.J., Dean, D.R., Vaidya, U.K. and Nyairo, E. (2009), "Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior", Compos. Part A: Appl. Sci. Manuf., 40(9), 1470-1475.   DOI
28 He, X.Q., Rafiee, M., Mareishi, S. and Liew, K.M. (2015), "Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams", Compos. Struct., 131, 1111-1123.   DOI
29 Heshmati, M. and Yas, M.H. (2013), "Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads", Mater. Des., 49, 894-904.   DOI
30 Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., ... and Yuan, W. (2013), "Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites", Nanos. Res. Lett., 8(1), 15.   DOI
31 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182.   DOI
32 Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.   DOI
33 Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
34 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 28(11), 1472-1490.
35 Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
36 Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625.   DOI
37 Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69(3-4), 335-342.   DOI
38 Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates", Compos. Struct., 9(3), 215-246.   DOI
39 Kant, T., Varaiya, J.H. and Arora, C.P. (1990), "Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes", Comput. Struct., 36(3), 401-420.   DOI
40 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431.   DOI
41 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217.   DOI
42 Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338.   DOI
43 Levinson, M. (1980), "An accurate, simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350.   DOI
44 Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668.   DOI
45 Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49.   DOI
46 Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2014), "Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates", Int. J. Appl. Mech., 6(03), 1450025.   DOI
47 Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43(3), 1489-1499.   DOI
48 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31.
49 Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266.   DOI
50 Murthy, M.V.V. (1981), "An improved transverse shear deformation theory for laminated antisotropic plates", Technical Report, NASA, United States.
51 Rafiee, M., Liu, X.F., He, X.Q. and Kitipornchai, S. (2014), "Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates", J. Sound Vib., 333(14), 3236-3251.   DOI
52 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.   DOI
53 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
54 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
55 Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Prog. Polym. Sci., 35(7), 837-867.   DOI
56 Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011.   DOI
57 Shen, H.S. (2009), "A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators", Compos. Struct., 91(3), 375-384.   DOI
58 Shen, H.S., Yang, J. and Zhang, L. (2000), "Dynamic response of Reissner-Mindlin plates under thermomechanical loading and resting on elastic foundations", J. Sound Vib., 232(2), 309-329.   DOI
59 Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220.   DOI
60 Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C. (2010), "Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties", Prog. Polym. Sci., 35(3), 357-401.   DOI
61 Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 020801.   DOI
62 Tounsi, A., Houari, M.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates". Aerosp. Sci. Technol., 24(1), 209-220.   DOI
63 Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F. and Chou, T. W. (2002), "Carbon nanotube/carbon fiber hybrid multiscale composites", J. Appl. Phys., 91(9), 6034-6037.   DOI
64 Wang, Z.X. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlin. Dyn., 70(1), 735-754.   DOI