• 제목/요약/키워드: Matrix Equation

검색결과 1,081건 처리시간 0.031초

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터 (Linear Quadratic Regulators with Two-point Boundary Riccati Equations)

  • 권욱현
    • 대한전자공학회논문지
    • /
    • 제16권5호
    • /
    • pp.18-26
    • /
    • 1979
  • 본 논문에서는 algebraic matrix Lyapunov equations과 a1gebraic matrix Riccati equations에 관하여 잘 알려져 있는 중요한 결과를 확장한다. 본 연구는 Matrix 미분 방정식에서 양단 경계조건이 존재하는 문제를 다루며 여기에서 얻어지는 결과는 기존하고 있는 결과를 포함하게 된다. 특히 선형 시스템이 periodic feedback gain control로 안정화되는 필요충분조건을 구하며, two-point boundary Riccati equations의 해를 쉽게 구하는 반복 계산방법을 제시한다. 또한 interalwise reeceding horizon을 이용한 새로운 periodic feedback gain control이 시스템을 안전화시켜줌을 보여준다.

  • PDF

DEEP LEARNING APPROACH FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Garam;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.95-105
    • /
    • 2022
  • In this paper, we consider a quadratic matrix equation Q(X) = AX2 + BX + C = 0 where A, B, C ∈ ℝn×n. A new approach is proposed to find solutions of Q(X), using the novel structure of the information processing system. We also present some numerical experimetns with Artificial Neural Network.

ON THE NONLINEAR MATRIX EQUATION $X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q$(0<q≤1)

  • Yin, Xiaoyan;Wen, Ruiping;Fang, Liang
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.739-763
    • /
    • 2014
  • In this paper, the nonlinear matrix equation $$X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q(0<q{\leq}1)$$ is investigated. Some necessary conditions and sufficient conditions for the existence of positive definite solutions for the matrix equation are derived. Two iterative methods for the maximal positive definite solution are proposed. A perturbation estimate and an explicit expression for the condition number of the maximal positive definite solution are obtained. The theoretical results are illustrated by numerical examples.

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION

  • Meng, Jie;Lee, Hyun-Jung;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제32권1호
    • /
    • pp.13-25
    • /
    • 2016
  • We consider the nonlinear matrix equation $X^p+AX^qB+CXD+E=0$, where p and q are positive integers, A, B and E are $n{\times}n$ nonnegative matrices, C and D are arbitrary $n{\times}n$ real matrices. A sufficient condition for the existence of the elementwise minimal nonnegative solution is derived. The monotone convergence of Newton's method for solving the equation is considered. Several numerical examples to show the efficiency of the proposed Newton's method are presented.

위상구성행렬식을 이용한 비압축성 순환망 형태의 유로망 해석에 관한 연구 (A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation)

  • 유성연;김범신
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.573-578
    • /
    • 2010
  • Topological matrix which reflects characteristics of network connectivity has been widely used in efficient solving for complicated flow network. Using topological matrix, one can easily define continuity at each node of flow network and make algorithm to automatically generate continuity equation of matrix form. In order to analyze flow network completely it is required to satisfy energy conservation in closed loops of flow network. Fundamental cycle retrieving algorithm based on graph theory automatically constructs energy conservation equation in closed loops. However, it is often accompanied by NP-complete problem. In addition, it always needs fundamental cycle retrieving procedure for every structural change of flow network. This paper proposes alternative mathematical method to analyze flow network without fundamental cycle retrieving algorithm. Consequently, the new mathematical method is expected to reduce solving time and prevent error occurrence by means of simplifying flow network analysis procedure.

Polynomial Equation in Radicals

  • Khan, Muhammad Ali;Aslam, Muhammad
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.545-551
    • /
    • 2008
  • Necessary and sufficient conditions for a radical class of rings to satisfy the polynomial equation $\rho$(R[x]) = ($\rho$(R))[x] have been investigated. The interrelationsh of polynomial equation, Amitsur property and polynomial extensibility is given. It has been shown that complete analogy of R.E. Propes result for radicals of matrix rings is not possible for polynomial rings.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.