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DEEP LEARNING APPROACH FOR SOLVING A

QUADRATIC MATRIX EQUATION

Garam Kim and Hyun-Min Kim∗

Abstract. In this paper, we consider a quadratic matrix equation Q(X) =

AX2 + BX + C = 0 where A,B,C ∈ Rn×n. A new approach is proposed
to find solutions of Q(X), using the novel structure of the information

processing system. We also present some numerical experimetns with Ar-

tificial Neural Network.

1. Introduction

Over the past years, we focus on solving a wide range of linear systems and
have attempted to find ways to solve the quadratic matrix equation. Many of
the results that discuss some properties of quadratic matrix equation have been
shown, and according to the results, many algorithms are introduced with some
restrictions. There are no entirely acceptable methods; there are some efficient
ones. Our subject here turns to the nonlinear quadratic matrix equation. Define
a quadratic matrix equation by

Q(X) ≡ AX2 +BX + C = 0 (1.1)

where A,B,C ∈ Rn×n. Then we wish to have a generalized formula to (1.1),
just like the usual rule for the roots of a scalar quadratic equation. Sad to say,
however, it is established in particular case when A = I, B commutes with
C and B2 − 4C has a square root. Besides, we should note that (1.1) could
have no solution, a finite positive number, or infinitely many [11]. In other
words, the existence and characterization of the solution are not straightforward,
and computing a solution poses an interesting challenge [12]. There has been
much effort to identify the sufficient condition for the existence of the solution:
Eisenfeld [6] uses the contraction mapping principle to show that if A and B

Received December 24, 2021; Accepted January 12, 2022.
2010 Mathematics Subject Classification. 15A24, 65F10, 65H10.
Key words and phrases. quadratic matrix equation, artificial neural network, deep learn-

ing, Newton’s method.
∗Corresponding author.
This work was supported by a 2-Year Research Grant of Pusan National University.

c©2022 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

95



96 G. KIM AND H-M KIM

are nonsingular and

4||B−1A|| ||B−1C|| < 1 (1.2)

for a subordinate matrix form, then there exist at least two solutions. And a
similar but more restrictive conditions as well as several sets of sufficient con-
dition for the existence without restriction are introduced [18], [20]. Likewise,
research on the complete theorem that guarantee the existence of solutions is
still ongoing.

Another interesting part would be the way to finding a solution. One of
the candidate is using a Symbolic Math ToolBox in Matlab. Of course, it is
powerful for n = 2, but this approach is able to find only for very special A,B
and C when n ≥ 3 [12]. Then a natural approach for solving the quadratic
matrix equation is Newton’s method, which has been investigated for this from
a half century ago. While newton’s method is very attractive for solving the
quadratic matrix equation, it has some weakness.

In this work, we take a new approach to find solutions of Q(X), using the
novel structure of the information processing system. Artificial Neural Network
solves problems that are difficult for human beings but relatively straightforward
for computers [7]; the network comprises a large number of interconnected ele-
ments under solid mathematical rules. We review the noble numerical method,
Newton’s method with powerful but imperfect results, and investigate how neu-
ral networks learn. From the numerical experiments, we conclude by describing
the relationship with the initial values that affect the convergence of Newton’s
method and its development.

2. Theory

The quadratic matrix equation can be solved under the special condition,
when A = I, B commutes with C (i.e. BC = CB) and B2 − 4C has a square
root. We can get the solution

X = −1

2
B +

1

2

√
B2 − 4C ,

where
√
M denotes any square root of M .

Unfortunately, there is no generalization of the formula for the solution of
quadratic matrix equation, with general A, B and C. The general information
about the existence of solvents comes from the connection between the quadratic
matrix equation and the quadratic eigenvalue problem. If Q(λ) has a linearly
independent eigenvectors, v1, · · · , vn, then Q(X) has a solvent [13]. However,
Kim [16] explains that not all cases that eigenvectors corresponding to distinct
eigenvalues are linearly independent, so constructing solvent is complicated.

The following result shows that all solvents ofQ(X) can be constructed by the
computationally satisfactory generalized Schur decomposition. We first define

F =

[
0 I
−C −B

]
and G =

[
I 0
0 A

]
.
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Theorem 2.1. [12, Theorem 3] All solvent of Q(X) are of the form X =
W21W

−1
11 = W11T11S

−1
11 W

−1
11 , where

W ∗FZ = T, W ∗GZ = S

is generalized Schur decomposition with W and Z unitary and T and S upper
triangular, and where all matrices are partitioned as block 2 × 2 matrices with
n× n blocks.

Moreover, we are able to find all solvents using solve command of Symbolic
Math ToolBox in Matlabbut symbolic solution is clearly impractical for large
n.

A natural approach for solving the quadratic matrix equation is Newton’s
method, which has been investigated by [3]. The method can be first off derived
by the derivative of Q(X).

Definition 2.2. The sensitivity of matrix function f : Cn×n → Cn×n to small
perturbation is governed by the Fréchet derivative. The Fréchet derivative at a
point A ∈ Cn×n is a linear mapping,

Cn×n DA−−→ Cn×n

E 7−→ DA(E)
(2.1)

such that for all small E ∈ Cn×n,

f(A+ E)− f(A)−DA(E) = σ(‖E‖). (2.2)

Such small perturbation affects in the original data on the solvents of Q(X)
and can arise from many sources, including errors in measurement and inaccu-
racy involved by generating matrices in a computer [3].

The Fréchet derivative of the quadratic matrix equation is obtained from the
expansion

AEiXi + (AXi +B)Ei = −Q(Xi)

Xi+1 = Xi +Hi

}
i = 0, 1, 2, . . . . (2.3)

The general approach for solving (2.3) is to solve

DX(E) = AEX + (AX +B)E

using n2 × n2 linear system driven by vec operator and kronecker product,

D′Xi
vec(Ei) = −vec(Q(Xi)), (2.4)

where

D′X = [ (XT ⊗A+ I ⊗AX) + I ⊗B ].

Supposing D′X is nonsingular, the newton’s iteration can be rewritten as

Xi+1 = Xi + D′Xi

−1
(−Q(Xi))
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which is equivalent to

AXiXi+1 +AXi+1Xi +BXi = AX2
i − C.

Standard convergence results for Newton’s method states that if D′X is non-
singular, then for the starting matrix of the newton’s method is sufficiently close
to the solution, and the iteration converge quadratically to the solvent [17].

Theorem 2.3. [22] Let f be Fréchet differentiable on D, and f ′ be Lipschitz
continuous. Let x∗ be a zero of f such that f ′(x∗) is nonsingular. Then there
exists a radius r such that the Newton’s method started from any x0 with ||x−
x0|| < r converges to x∗ quadratically.

However, the inverse of the derivative must be evaluated at each iteration,
which comes at a cost, and some modification is necessary to achieve convergence
from initial values not very near a solution [5].

This analysis breaks down if D′X is singular. A singular D′X represents an
extreme case of sensitivity in that small perturbations in the data can produce
unbounded changes in the solvents. There is no question here of subroutine
accuracy or of errors in computation; these are fundamental properties of the
problem itself.

3. Deep Learning Approach of solving Q(X)

An Artificial Neural Network (ANN) is an information processing mechanism
that is inspired by the biological nervous system, such as the brain. The first
step toward ANN came in 1943. The key paradigm is the novel structure of
the information processing system. It is composed of a large number of highly
interconnected processing elements, called neurons, working in harmony to solve
specific problem [15]. Let first us look over the elements in the structure of ANN,
and understand how does neural network work and learn.

3.1. Introduction to ANN

There are many types of neural networks designed by now and new ones
are created every week but all can be described by activation function of their
neurons, by the learning rule and by the connecting formula.

Notation 3.1.
• L ∈ N is the number of layers of the network,
• Nl ∈ N, is the dimension of the output of l-th layer for l = 1, . . . , L,
• σ : R→ R is the activation function which acts pointwise

i.e., σ(y) = [σ(y1), . . . , σ(yL)] for y = [y1, . . . , yL] ∈ RL.

We consider a feedforward architecture where only neurons from neighboring
layers can be connected.

Definition 3.2. [10] Let d, L ∈ N.
(1) A neural network Φ with input dimension d and L layers is a sequence of
matrix-vector tuples
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Φ = ((W 1, b1), (W 2, b2), . . . , (WL, bL)),

where N0 = dx and N1, N2, . . . , NL ∈ N, and where each W l is an Nl × Nl−1
matrix and bl ∈ RNl . Then we call Φ a fully connected and feedforward neural
network. The neural network Φ is said to be a deep neural network if L ≥ 2.
(2) Then, we define the associated realization Φ with activation function σ :
R→ R as the map Rσ(Φ) : Rdx → RNL such that

Rσ(Φ)(x) = xL,

where xL results from scheme given by

x0 := x,

xl := σ(W lxl−1 + bl), l = 1, . . . , L− 1,

xL := WLxL−1 + bL.

Here the activation function σ is a nonlinear function and popular choices of
σ are the rectified linear unit (ReLU) function ReLU(x) = max(x, 0) and the
sigmoid function Sigmoid(x) = (1 + exp(−x))−1.

Cybenko [2] claims that a shallow feedforward network which has a single
hidden layer, with sigmoid activation function can approximate any Borel mea-
surable function from one finite-dimensional space to another with almost zero
amount of loss. The output units are always assumed to be linear. If the num-
ber of hidden layer is more than two, then we call the network as deep learning
network.

Theorem 3.3 (Universal Approximation Theorem). Let In denote n-dimensional
unit cube, [0, 1]n and σ be any continuous sigmoid function. Then the finite
sums of the form

G(x) =
∑N
j=1 αjσ(Wjx+ bj)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there is a
sum G(x), of the above form, for which

|G(x)− f(x)| < ε for all x ∈ In.

Leshno et al. showed in 1993 [19] that it is not the specific choice of the
activation function, but rather the multilayer feed-forward architecture itself
which means the network has to be large enough to being approximated [14].
However, Barron [1] claims that the theorem does not say how large this network
will be. The size of network is to be considered how depth the network is, or
how many number of nodes are. From the experiment by Goodfellow et al. [7],
empirical result shows that the deeper network generalize better. However, the
result shows that in the fully connected layer, test accuracy of the network does
not change even the number of parameter increases. In other words, deeper
model tends to be perform better, but it is not merely because of larger model.
Specially, it expresses a belief that the function should be consist of many
simpler functions composed together [7].
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Summarizing what we define in this section, for a given network with depth
L, we denote the result of each layer as

xl = σ(W lxl−1 + bl), l = 1, 2, · · · , L,

where weight, the ‘connection strength’ to each note to the next layer, be

W l =

 W l
1.1 · · · W l

1.Nl−1

...
. . .

...
W l
Nl.1

· · · W l
Nl.Nl−1


 xl−11

...

xl−1Nl−1

+

 bl1
...

blNl−1

 .
Along the network’s layer, the final function is denoted as

f(x) = WL(WL−1σ(· · · (σ(W 2σ(W 1x + b1) + b2) · · · ) + bL−1) + bL.

3.2. Convergence of ANN

Section 3.1 introduces what types of function can be approximated by neural
network. However, in a real-world, these networks are used to estimate functions
which we do not know how to write down analytically [8]. Hence, we will outline
the most common method of training neural network.

In the feedforward network, the input x provides the initial information that
flows forward through to the hidden unit. Once the network weights and biases
have been initialized, the network is ready for training. During training, the
weights and biases of network are iteratively adjusted to minimize the network
performance and finally produce ŷ (it is more general notation for the output
xL in the definition and its dimension denotes by dy(= NL)). In order to deter-
mine how well a prediction by the iteration is, we may establish a performance
function (loss function).

For a given training set, (xi, yi)
m
i=1 ⊂ Rdx × Rdy , we would like to learn a

output ŷ from a parametric family H := {θ | θ ∈ {W l
i.j , b

l
i}, l = 1, 2, · · · , L} by

minimizing performance function. The most common function is Mean Square
Error (MSE), which measures the networks performance according to the mean
of squared errors:

min
θ∈H

L(θ) :=
1

L

L∑
n=1

‖ŷ − y‖22, where ŷ = f(θ,x).

We train all layers by Gradient Descent (GD) method, for k = 1, 2, · · · be the
each iteration, and l ∈ {1, 2, · · · , L}, then all weights and biases are updated as
follows:

W l(k) = W l(k)− η ∂L(θ)(k − 1)

∂W l(k − 1)
,

bl(k) = bl(k)− η ∂L(θ)(k − 1))

∂bl(k − 1)
,

where η > 0 is the learning rate.
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During training, the weights and biases of network are iteratively adjusted to
minimize the network performance. More generalized notation for GD method
is defined by the equation below:

xk+1 = xk − α∇f(xk) where f : RN → R.

Here f is the form of the minimization problem minx∈RN f(x), and f(x) ∈ C2.
GD is one of the well-known algorithm to attack optimization problem when

the point x so that ∇f(x) = 0, then we call critical point. The set of local
minima of f is a subset of critical points of f . The algorithm may converge
to a critical point which is not a local minimum, called a saddle point [23].
Hence, the interplay between the saddle points and the performance of GD is
a critical and not well-understood aspect of non-convex optimization. Despite
our incomplete theoretical understanding, in practice, the intuitive nature of
the GD method makes it a basic tool for attacking non-convex optimization
problem, where we have very little understanding of the geometry. The worst
case, converging to saddle point [21], exists in theory; practitioners have fairly
successful at applying these techniques across a wide variety of problems [25].
Moreover, many alternative methods have been introduced to be faster and
minimizing a combination of squared error and weights, et cetera. Generally, the
train stops when any of these conditions occurs; when the maximum number of
epochs (repetitions) is reached; when the maximum amount of time is exceeded;
when performance is minimized to the goal; when the performance gradient falls
below given scalar [4];

4. Numerical Experiments and Concluding remarks

A large number of problems in the type of quadratic matrix equation arise
in several applicants, such as dynamic systems as well as Markov Chain and
so on. We consider the following special QME, which is motivated by noisy
Wiener-Hopf problem for Markov chains:

A = In, B = diag(a1, · · · , an), C = M − s In (4.1)

where

s ≥ ρ(M)

and ρ denotes the spectral radius. More theorems and proofs are in the excellent
papers, see [9, 26]. In this chapter, we try two experiments; the accuracy of
network according to the dimension of the equation, and how the output of
network close to the numerical solution.

We adopted L = 5, dx = n2+n and (N1, N2, N3, N4, N5) = (100, 70, 50, 10, n2).

The activation function σ : R → R is sigmoid, i.e., σ(x) = (1 + exp(−x))
−1

.
In other words, we make deep learning structure with 4 hidden layers, n2 + n
inputs and n2 outputs. We trained a network with coefficients and numerical
solutions of thousands of equations, and all matrices are vectorized. The input
data is divided randomly into seventy percent of training data, fifteen percent
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Figure 1. The difference between XANN and X∗ at each dimension.

of validation data, and fifteen percent of testing data. We use Mean Square
normalized Error (MSE) to measure the network’s performance. The figure 1
depicts 2-norm of ‖XANN −X∗‖ at each dimension, where XANN is given by
trained neural network and X∗ is the corresponding numerical solution.
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Figure 2. The relationship between ‖XANN − X∗‖ and
‖Q(X∗)‖ at each dimension.

Figure 1 shows how well our network predicts solutions. The larger the
matrix is, the more parameters there are, the further away XANN is from the
numerical solution X∗. Here we would empirically draw an assumption of the
convergence radius of Newton’s method, mentioned in Theorem 2.3, which we
should prove in future work.

The possibility of using Newton’s method for small problems has been inves-
tigated by Santosa [27]. When the matrix is large, Newton’s algorithms involve
the computation and inversion of large matrix [24]. Furthermore, we check the
norm of the equation at X, making the dimension large. Even though X is not
entirely functional for the true solution, it leaves a hypothesis that it could be
utilized as a close initial guess.
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