• Title/Summary/Keyword: Mathieu stability

Search Result 27, Processing Time 0.033 seconds

Stability Analysis of Mathieu Equation by Floquet Theory and Perturbation Method (Floquet 이론과 섭동법에 의한 Mathieu Equation의 안정성해석)

  • Park, Chan Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.734-741
    • /
    • 2013
  • In contrast of external excitations, parametric excitations can produce a large response when the excitation frequency is away from the linear natural frequencies. The Mathieu equation is the simplest differential equation with periodic coefficients, which lead to the parametric excitation. The Mathieu equation may have the unbounded solutions. This work conducted the stability analysis for the Mathieu equation, using Floquet theory and numerical method. Using Lindstedt's perturbation method, harmonic solutions of the Mathieu equation and transition curves separating stable from unstable motions were obtained. Using Floquet theory with numerical method, stable and unstable regions were calculated. The numerical method had the same transition curves as the perturbation method. Increased stable regions due to the inclusion of damping were calculated.

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform

  • Chandrasekaran, S.;Kiran, P.A.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.345-360
    • /
    • 2018
  • Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.

The Effect of Damping Plate on Mathieu-type Instability of Spar Platform (스파 플랫폼의 Mathieu형 불안정성에 미치는 감쇠판의 영향)

  • Rho, Jun-Bumn;Choi, Hang-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.124-128
    • /
    • 2005
  • This paper describes motion stability of a spar platform with and without a damping plate in regular waves. The heave and pitch motion equation is derived in terms of Mathieu equation and the stability diagram is obtained. It is shown that the spar platform with damping plate has smaller unstable region than that without damping plate in the stability diagram. Model tests are carried out to verify the mathematical analysis. Under the condition that the pitch natural period is approximately double the heave natural period and the heave motion is amplified at heave resonance, unstable pitch motions are evoked. However the unstable motion is stabilized in cases of spar platform with damping plate. Therefore the damping plate is an effective device to stabilize the motion of spar platform.

Parametrically Excited Vibrations of Second-Order Nonlinear Systems (2차 비선형계의 파라메트릭 가진에 의한 진동 특성)

  • 박한일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.67-76
    • /
    • 1992
  • This paper describes the vibration characteristic of second-order nonlinear systems subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu equation in the first instability region are obtained by using a perturbation technique and are compared with those by a numerical integration method. It is shown that the response amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic nonlinear damping force. The largest reponse amplitude of parametric vibration occurs in the first instability region of Mathieu stability chart. The parametric excitation induces the response of a dynamic system to be subharmonic, superharmonic or chaotic according to their dynamic conditions.

  • PDF

Effect of Parametric Excitation on Lateral Vibrations of Long, Slender Marine Structures (장주형 해양구조물의 횡방향 진동에 대한 파라메트릭 가진의 효과)

  • Park, Han Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1993
  • 본 연구에서는 장주형 해양구조물의 횡방향 진동에 대한 파라메트릭 가진 효과를 고찰하였다. 먼저, 장주형 해양구조물의 횡방향 운동에 대한 4계 편미방지배방정식을 비선형 Mathieu 방정식으로 유도하였다. 비선형 mathieu 방정식의 해를 구하여 장주형 해양구조물의 동적 반응 특성을 해석하였다. 유체 비선형 감쇠력은 불안정 조건하에 있는 파라메트릭 진동의 반응크기를 제한 하는데 중요한 역활을 한다. 파라메트릭 진동의 경우 가장 큰 반응크기는 Mathieu 안정차트의 첫번째 불안정 구간에서 일어난다. 반면에, 파라메트릭 진동과 강제진동의 결합 진동인 경우, 가장 큰 반응 크기는 두번째 불안정 구간에서 발생된다. 파라메트릭 가진으로 인한 장주형 해양구조물의 횡방향 운동은 동적조건에 따라 subharmonic, superharmonic 또는 chaotic 운동이 되기도 한다.

  • PDF

An investigation into the motion and stability behaviour of a RO-RO vessel

  • Mohan, Poonam;Shashikala, A.P.
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2019
  • Studies on motion response of a vessel is of great interest to researchers, since a long time. But intensive researches on stability of vessel during motion under dynamic conditions are few. A numerical model of vessel is developed and responses are analyzed in head, beam and quartering sea conditions. Variation of response amplitude operator (RAO) of vessel based on Strip Theory for different wave heights is plotted. Validation of results was done experimentally and numerical results was considered to obtain effect of damping on vessel stability. A scale model ratio of 1:125 was used which is suitable for dimensions of wave flume at National Institute of Technology Calicut. Stability chart are developed based on Mathieu's equation of stability. Ince-Strutt chart developed can help to capture variations of stability with damping.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation (매개 가진되는 얇은 외팔보의 비선형 진동 안정성)

  • Bang, Dong-Jun;Lee, Gye-Dong;Jo, Han-Dong;Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

Effects of elastic foundation on the dynamic stability of cylindrical shells

  • Ng, T.Y.;Lam, K.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.193-205
    • /
    • 1999
  • A formulation for the dynamic stability analysis of cylindrical shells resting on elastic foundations is presented. In this previously not studied problem, a normal-mode expansion of the partial differential equations of motion, which includes the effects of the foundation as well as a harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed using Bolotin's method. The present study examines the effects of the elastic foundation on the instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.