Journal of Ocean Engineering and Technology, Vol. 7, No. 1, pp. 73~80, Jun. 1993 73

OF X

Effect of Parametric Excitation on Lateral

Vibrations of Long, Slender Marine Structures

Han I Park*

(1992+1

129 204 AF)

A7 N GFrEe AW A5 e Bey sxe) w2

u}

g o

Key Words : #%3 8] %7+ 2% (Long, slender marine structure), 3% 3% (Lateral vib-
ration), F}ebvl E2] 7}%] (Parametric excitation), 2% 7% (Combined excita-
tion), Mathieu % 2}E (Mathieu stability chart)

=

I

B odFeMe 27 ddTEEd F4F A i ey s a54E 32
stgich AA, 35y A FTREL) FE 5ol N 44 ARG S Al Y

Mathieu WA A o2 fx3gdc) vy

go B4 g S4L stk £

ooy (m

T3 AAAEd A3 AT A5 7
5 rd

INTRODUCTION

This research has been initially intended to
analyse the interaction between ocean superstruc-
tures and mounted slender marine structures
such as rigid risers, TLP tethers. Figure 1 shows

* @R gol e, o) Behal, AT

o}, st e JlRle 2 Q¥ AFY Hdrx
bharmonic, superharmonic ¥+ chaotic ¥-5°] 7| % ¥}

Mathieu W4 49l 18 Falo] 458 #dra
Ay A HE by =l Sl e

2 AEe) WA E AR sk FaT ABe B ApEY ASY A AR
4hg-717)% Mathien QHAAFES) A $4A oA dojur), whael, sfebol =2

B b Avle FHA EdA Tkl 2A

e Iy 35 FH2zZe ot su-

some typical examples of such systems : a vertical
marine riser deployed from a drilling vessel and
tethers of a tension leg platform. As the first step
to this research, the dynamic behaviours of the
slender marine structures are analysed in this
work.

These slender marine structures are subjec-
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Fig. 1 Drilling Vessel and Tension Leg Platform

Systems

ted to several kinds of excitation. The main sour-
ces of the excitation are the vertical(causing pa-
rametric excitation) and lateral(inducing forcing
excitation) forces of their top mounting point im-
parted by heave and surge motions of the surface
platform respectively. When lateral forces are co-
nsidered only in the dynamic analysis of the st-
ructures, the lateral motion becomes forced vib-
rations or a forcing excitation problem. Much re-
search work has been carried out on this prob-

V-3 Meanwhile, when the

lem —see references.
vertical forces, that is, time—verying axial forces
are taken into account only, the resulting motion
becomes parametrically excited vibrations(the
Mathieu stability problem). There has been some
research on the problem such as Hsu* and Patel
and Park?

However, when the vertical and lateral forces
are simultaneously considered, which is more
realistic, the dynamic behaviour of the slender
marine structures becomes a combined paramet-
ric and forcing excitation problem. Compared to
forcing or parametric excitation, research on com-
bined excitation has only recently been carried

out over the last two decades—see references” ™
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and therein references. Other than those of ma-
rine structures, there are some examples of sys-
tems under combined excitation such as mecha-
nisms on vibrating foundations, ship rolling mo-
tion by following or oblique seas, load motion of
a crane vessel, yaw motion of tension leg platform
by head seas, etc. In this paper, as the result of
parametric excitation effect on the lateral vibra-
tions of slender marine structures, the combined

excitation problem will also be studied.

THEORETICAL APPROACH

The slender vertical marine structure conside-

red in this work is idealised as a straight, simply
supported column of uniform cross section. Figure
2 shows the idealised configuration under combi-
ned excitation and gives the notation to be used.
For this kind of marine structure, a governing

equation of lateral motion can be written as
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where M is the total mass per unit length of the
structure segment, El is the structure flexural ri-
gidity, T, 1s constant axial {ension, g(t) is the fu-
nction of time-—varying axial forces and B,=0.5
Cy pw do, where G, is a drag coefficient, d, is the
outer diameter of the structure and p, is sea wa-
ter density. It 1s noted that since this research
intended to analyse the complicated parametric
excitation effect on wvibrations of slender marine
structures, other physical terms which can be in-
cluded in the governing equation” are simplified.

The partial differential equation! is reduced to
an ordinary non—linear differential equation by
using the method of separation of variables. As

can be seen in Figure 2, since both ends of the
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Fig. 2 Model structure configuration and nota-

tion.

structure are pin-jointed, its modes of motion can
be readily reduced to a rigid body mode and si-
nusoidal elastic response modes. Then an appro-
ximate solution to equation" is written in the

form
X o n
_ - , e asesraans 2
y®O=h®) 7 + nz;jf,.(t) sin— ©3)

where L is the length of the structure, f.(t) is an
unknown function of the elastic response modes(a
generalised coordinate) and h(t) is a prescribed
lateral motion of the top end of the structure im-
parted by surface platform surge motion.
Substituting equations? into equation,” multipl-
ying the resulting equation throughout by sin
(nmx/L) and integrating over the length of the

structure gives
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In deriving equation,” the following integrations

are used.
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Rearranging equation® gives
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Equation” seems to be very complicated to

analyse, especially due to the existence of the pa-
rametric excitation term. In order to analyse the
complicated excitation problems, further assump-
tions are made. First, of the elastic response mo-
des, only the predominant fundamental (first)
mode is considered. The assumption of employing
only the fundamental mode shape has been justi-
fied experimentally by Somerset and Evan—Iwa-
nowski.¥ Secondly, the functions of surge induced
top end lateral motion, h(t) and heave induced
time — verying axial forces becomes move regular
due to the transfer function from vave action to
structural forces. g(t) are assumed to be sinusoi-
dal. The assumption is based on the fact that
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even if ocean waves are irregular, the time—var-
ying axial forces. In addition, this research is co-
ncerned with large long period waves which tend
to be more narrow banded in spectral content.

The initial boundary condition of the top end
is set to be in the middle point of surge motion
and in the lowest position of heave motion. In ad-
dition, the top end is taken to rotate in the clock-
wise direction by the wave —induced surface plat-
form motion. Therefore, h(t) and g(t) can be put
to be

h(t)=—y, sin ot and g()=—S cos wt

where y, and S are respectively the amplitudes
of top end lateral displacements and timevarying
axial forces, and w is the angular frequency of the
top end motion. Note that since they both stem
from a single source, the angular frequencies of
the two excitations are the same.

It is useful to introduce a nondimensional time
such as t=wt. Then, equation® finally takes the

form
dz
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Equation” represents vibrations of the struc-

ture subjected to combined parametric and for-
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cing excitation. The lateral response of the struc-
ture is strongly depends upon the B/a and yo
which are referred here as the strengths of para-
metric excitation and forcing excitation respecti-
vely. The hydrodynamic damping related coeffi-
cient, ¢ plays a role in limiting the response of
combined excitation. If f is obtained by solving
equation,” the lateral responses of the structure
under combined excitation can be obtained by su-
bstituting f into equation.? At the present time,
adequate techniques are not available to give an
analytical solution of equation,” especially for la-
rge values of a and B. Therefore, it is necessary

to employ a numerical method.

Before carrying out a numerical analysis, it is
worthwhile examining equation” further. First, if
the time— varying axial force, S cos wt, is not co-
nsidered, that is, B=0 from equation,” the resul-
ting motion of the structure becomes forced vib-
rations. An analytical solution of the forced vibra-
tion problem can be obtained by iteration proce-
dures?

A resonance occurs when the forcing angular
frequency, ®, is equal to the natural frequencies,
®. However, when the hydrodynamic damping fo-
rce is considered, the amplitude of a resonance
response is limited.

Second, if the lateral motion of the top end is

not considered, that is, if yo is zero, equation” be-

comes
&f af af
+(a—Beost)f+C| — | — =0
da< Beostf . dt ( dt
................................................ (9)
by using the following integral
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Equation” is the non—linear Mathieu equation
and describes parametrically excited vibrations of

the structure.
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When the hydrodynamic damping force is exc-
luded, the response of parametric excitation be-
come stable or unstable according to the combi-
nation of parameters, o and B. This fact results
in creating the Mathieu stability chart(Figure 3).
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Fig. 3 Mathieu stability chart(shaded areas are
unstable).

Patel and Park” created for the first time the
Mathieu chart for large values of o and B which
is necessary for the dynamic analysis of highly
tensioned slender structures and structural pulse
buckling.

However, when the non—linear hydrodynamic
damping force is included, even unstable solu-
tions are limited. An approximate analytical solu-
tion can be obtained for small values of the para-
meters, a and B, by using perturbation techniques
and can be expressed in the form-—see referen-
ces 9 and 5 for further details.

(D =ay cos (~A27—t+eN)

+ (Higher order terms)

where N is a positive integer and indicates the
number of the instability region along the a axis
of the Mathieu stability chart.

For example, in the first instability region, the
steady state amplitude, a, and the phase angle,
¢1, become

Displacement (m)
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As can be seen from equation'”

the response
of parametric excitation becomes subharmonic (in
the first instability region, that is, N=1), harmo-
nic (N=2) or superharmonic (N>2). This result
will be shown later. It is, however, noted that
there exist some special cases where the respo-
nse motion of parametric excitation becomes
chaotic which was shown in the reference.'”’ Fi-
gure 4 illustrates one example of such chaotic
motion. Therefore there remains further research
into identifying the detailed response characteris-

tic of parametric excitation.
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Fig. 4 One Example of Chaotic Motion for Para-
metric Excitation

RESULTS AND DISCUSSION

Equation®” which describes a combined excita-
tion problem, is solved using the fourth—order
Runge — Kutta method with an extension to Rom-
berg’ s integration method. The results of this re-
search are illustrated for three typical values of
a and o given in Table 1. Here drag coefficient
Cq is assigned to be 0.8. The worst sea state is
an important environmental condition for the de-
sign of marine structures and is thus considered
here. In such a condition, 15 seconds is a typical

ocean wave period and is used here as an excita-
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Table 1. Values of Each Excitation Parameter for
Three Cases

Excitation Case 1 \Ese I | Case 1 |

Forcing a=025 | a=10 a=6.53

yo=3.0m | yo=3.0m | yo=3.0m
Parametric a=025 | a=10 a=6.53
=025 | =10 p=6.53
Combined =025 | a=10 0=653
B=025 | B=10 B=6.53

| Y= 3.0m | yy=3.0m | y=3.0m

tion period. The amplitude of top end lateral dis-
placement, y,, is assumed to be 3.0m which corre-
sponds to RAO(the ratio amplitude operator)
being 0.2 for 15.0m of ocean wave amplitude. The
initial conditions employed in this study for the
steady —state solutions are f(0)=0.1 and df(0)/
drt=0.0.

As can be seen from Figure 3(Mathieu stability
chart), the dynamic conditions for CASE I, II
and I in Table 1 correspond to the first, second
and fifith instability regions respecitively. In order
to investigate the effect of parametric excitation,
comparisons between forcing, parametric and co-
mbined excitations are first made. For the validity
of the comparison, the strengths of parametric
excitation and forcing excitation, B/a and y,, are
taken to be equal to 1.0 and 3.0m respectively for
the three structures.

Figure 5(a) shows a comparison between for-

cing, parametric and combined excitations for the
ASE L. The response amplitudes of three excita-
tions are nearly identical at a steady state. It can
be stated that in the first instability region there
is no recognisable effect of the parametric excita-
tion to increase the response amplitude of the
dynamic system. Meanwhile, the response period
of parametric excitation is double the excitation
period. As was stated in the previous section, this
means that the response motion of parametric ex-

citation becomes subharmonic in the first instabi-
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Fig. 5 Comparison of Displacement Time Histo-

ries for Three Excitations

lity region. In the case of combined excitation, its
response period is identical to the excitation pe-
riod. However, if the strengths of excitations, B/a

and y, change, the response period of combined
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excitation can also change.

Figure 5(b) presents results for the CASE II
with a dominant dynamic condition falling under
the second instability region. It can be seen from
Figure 5(b) that the relative response ampitudes
of three excitations in the second instability re-
gion are quite different from those in the first in-
stability region{Figure 5(a)). In other words, in
the second instability region, the response ampli-
tudes of combined excitation are much larger
than those of forcing or parametric excitation.
This fact means that the effect of parametric ex-
citations is significant in the second instability re-
gion. The response periods of the three excita-
tions are all the same as the 15 second excitation
period.

Figure 5(c) illustrates the result for the CASE
I with a dominant dynamic condition which cor-
responds to being near the fifth instability region.
The response amplitude of combined excitation is
also much larger than that from forcing or para-
metric excitation as was for the CASE II. Figure
5(c) indicates that even though the responses of
forcing or parametric excitation are small, those
of combined excitation are relatively large. The
response period of forcing excitation is still the
same as the excitation period, 15 seconds. On the
other hand, the response periods of parametric
and combined excitations are small compared to
the excitation period, that is, the parametric exci-
tation causes the response of the dynamic system
to be superharmonic in the higher instability re-
gions.

In order to compare more clearly the response
amplitudes of three excitations for different insta-
bility regions, many numerical calculations have
been carried out. The absolute maximum respo-

nse amplitude at steady state, | f| .., was obtai-
ned for several different set values of a and B in-
stead of taking only three set values as in Figure
5. However, the strengths of excitations, B/a=1.0

and y,=3.0m are kept as in Figure 5. Figure 6
shows the frequency response curves of forcing,
parametric and combined excitations as functions
of a values. A hydrodynamic damping force is co-
nsidered in this research, so the responses are all

limited.

Fig. 6 Comparison of Frequency Response Cur-

ves for Three Excitations

In the case of parametric excitation, large res-
ponse amplitudes occur in each instability region
and their maximum value exists in the centre of
each instability region with the magnitude of res-
ponse amplitude decreasing for higher instability
regions. The response diagram for combined ex-
citation shows a quite different pattern from
those for forcing and parametric excitations with
this response being large in the even numbers of
instability regions but relatively small in the odd
numbers of instability regions.

The above comparison for three excitations
shows that the effect of parametric excitation is
significant to increase the lateral response of sle-
nder marine structures, especially in the even
numbers of instability regions. This aspect means
that parametric excitation needs to be considered
in the dynamic analysis of slender marine struc-

tures.

CONCLUSION

This paper addesses one of preliminary results
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of investigating the interaction between ocean su-
perstructures and mounted long slender marine
structures ; the effect of parametric excitation on
the lateral response of the slender structures.
The parametric excitation induces the lateral mo-
tion of slender marine structures to be subhar-
monic, superharmonic or chaotic according to
their dynamic conditions. By comparing response
amplitudes of forcing excitation and combined ex-
citation, it is known that the effect of parametric
exciation is significant, expecially in the even nu-
mbers of instability regions of the Mathieu stabi-
lity chart. Therefore, in the dynamic analysis of
tensioned slender marine structures, parametric
excitation effect(time —varying axial forces or di-
splacements) needs to be considered for more

accurate results.
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