• Title/Summary/Keyword: Mathieu 방정식

Search Result 6, Processing Time 0.02 seconds

Effect of Parametric Excitation on Lateral Vibrations of Long, Slender Marine Structures (장주형 해양구조물의 횡방향 진동에 대한 파라메트릭 가진의 효과)

  • Park, Han Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1993
  • 본 연구에서는 장주형 해양구조물의 횡방향 진동에 대한 파라메트릭 가진 효과를 고찰하였다. 먼저, 장주형 해양구조물의 횡방향 운동에 대한 4계 편미방지배방정식을 비선형 Mathieu 방정식으로 유도하였다. 비선형 mathieu 방정식의 해를 구하여 장주형 해양구조물의 동적 반응 특성을 해석하였다. 유체 비선형 감쇠력은 불안정 조건하에 있는 파라메트릭 진동의 반응크기를 제한 하는데 중요한 역활을 한다. 파라메트릭 진동의 경우 가장 큰 반응크기는 Mathieu 안정차트의 첫번째 불안정 구간에서 일어난다. 반면에, 파라메트릭 진동과 강제진동의 결합 진동인 경우, 가장 큰 반응 크기는 두번째 불안정 구간에서 발생된다. 파라메트릭 가진으로 인한 장주형 해양구조물의 횡방향 운동은 동적조건에 따라 subharmonic, superharmonic 또는 chaotic 운동이 되기도 한다.

  • PDF

Propagation and Radiation Characteristics of Elliptical Corrugated Waveguide (타원형 커루게이트 도파관의 전파 및 복사 특성)

  • 고욱희;백경훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.614-620
    • /
    • 1998
  • In this paper, we analyze theoritically the propagation and radiation characteristics for elliptical corrugated waveguides. The solutions of wave equations in an elliptic cylinder system are obtained in terms of Mathieu functions of 1st and 2nd kind. The electromagnetic fields in the elliptical corrugated waveguide can be represented by series and products of angular and radial Mathieu functions. By using impedence matching at the boundary between the inner region and the slot region, characteristic equations are derived. Then the characteristic equation is solved for $HE_{11}$ mode which is dominant mode in the elliptical corrugated waveguide and the fields in the aperture is calculated. And the propagation pattern for the elliptical corrugated waveguides is calculated through the field equivalence principle.

  • PDF

Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation (매개 가진되는 얇은 외팔보의 비선형 진동 안정성)

  • Bang, Dong-Jun;Lee, Gye-Dong;Jo, Han-Dong;Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties (사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구)

  • Chandrasekaran, Nichith;Yi, Eunhui;Park, Jae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.845-851
    • /
    • 2014
  • Dielectrophoresis (DEP) is defined as the motion of suspended particles in solvent resulting from polarization forces induced by an inhomogeneous electric field. DEP has been utilized for various biological applications such as trapping, sorting, separation of cells, viruses, nanoparticles. However, the analysis of DEP trapping has mostly employed the period-averaged ponderomotive forces while the dynamic features of DEP trapping have not been attracted because the target object is relatively large. Such approach is not appropriate for the nanoscale analysis in which the size of object is considerably small. In this study, we thoroughly investigate the dynamic response of trapping to various system parameters and its influence on the trapping stability. The effects of particle conductivity on its motion are also focused.

A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation (파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구)

  • Y.C. Kim;J.S. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.69-82
    • /
    • 1991
  • The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated. As a solution method, the Galerkin's method is used to obtain a set of coupled Mathieu type equations. To obtain the stability chart, both the perturbation method and numerical method are used, and the results of the both methods are compared with each other. The stability regions for the various boundary conditions are obtained, Also the effects of the viscous damping, the mean tension and the multi-frequency parametric excitation are studied in detail.

  • PDF

A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation (탄성지반위에 놓인 S형상 점진기능재료(FGM)판의 동적 불안정성에 관한 연구)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • This article presents the dynamic instability response of sigmoid functionally graded material plates on elastic foundation using the higher-order shear deformation theory. The higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. The results of dynamic instability analysis of sigmoid functionally graded material plate are presented using the Navier's procedure to illustrate the effect of elastic foundation parameter on dynamic response. The relations between Winkler and Pasternak elastic foundation parameter are discussed by numerical results. Also, the effects of static load factor, power-law index and side-to-thickness ratio on dynamic instability analysis are investigated and discussed. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for the dynamic instability study of S-FGM plates.