• Title/Summary/Keyword: Mathematics of Chosun Dynasty and western mathematics

Search Result 6, Processing Time 0.016 seconds

이조시대의 대수방정식의 해법에 관하여 -$ulcorner}$무이해${\lrcorner}$를 중심으로-

  • 최창호
    • Journal for History of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 1998
  • In the Chosun Dynasty Nam, Byung-Gil(another name is Nam, Sang-Gil alias Won-Sang; 1820-1869) made a research comparing Chinese traditional mathematics with western mathematics, which missionaries who came to China at the end of Ming Dynasty introduced. He particularly studied fundamental differences between Chinese and western methods to solve algebraic equations. He wrote an article "Moo-Ee-Hae", in which he insisted that the two methods are eventually same though they are different in the고 expressions. His article has big significance as the first mathematic paper in the history of Korean mathematics.thematics.

  • PDF

Mathematics of Chosun Dynasty and $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ (數理精蘊) (조선(朝鮮) 산학(算學)과 수리정온(數理精蘊))

  • Hong Young-Hee
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.25-46
    • /
    • 2006
  • We investigate the process of western mathematics into Chosun and its influences. Its initial and middle stages are examined by Choi Suk Jung(崔錫鼎, $1645\sim1715$)'s Gu Su Ryak(九數略), Hong Jung Ha(洪正夏, $1684\sim?$)'s Gu Il Jib(九一集) and Hwang Yun Suk(黃胤錫, $1719\sim1791$)'s I Su Shin Pyun(理藪新編), Hong Dae Yong(洪大容, $1731\sim1781$)'s Ju Hae Su Yong(籌解需用), respectively. Western mathematics was transmitted for the study of the Shi xian li(時憲曆) when it was introduced in Chosun. We also analyze Su Ri Jung On Bo Hae(數理精蘊補解, 1730?) whose author studied $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ most thoroughly, in particular for astronomy, and finally Lee Sang Hyuk(李尙爀, $1810\sim?$), Nam Byung Gil(南秉吉, $1820\sim1869$) who studied together structurally western mathematics.

  • PDF

Lee Sang Seol's mathematics book Su Ri (이상설(李相卨)의 산서 수리(算書 數理))

  • Lee, Sang-Gu;Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2009
  • Since western mathematics and astronomy had been introduced in Chosun dynasty in the 17th century, most of Chosun mathematicians studied Shu li jing yun(數理精蘊) for the western mathematics. In the last two decades of the 19th century, Chosun scholars have studied them which were introduced by Japanese text books and western missionaries. The former dealt mostly with elementary arithmetic and the latter established schools and taught mathematics. Lee Sang Seol(1870~1917) is well known in Korea as a Confucian scholar, government official, educator and foremost Korean independence movement activist in the 20th century. He was very eager to acquire western civilizations and studied them with the minister H. B. Hulbert(1863~1949). He wrote a mathematics book Su Ri(數理, 1898-1899) which has two parts. The first one deals with the linear part(線部) and geometry in Shu li jing yun and the second part with algebra. Using Su Ri, we investigate the process of transmission of western mathematics into Chosun in the century and show that Lee Sang Seol built a firm foundation for the study of algebra in Chosun.

  • PDF

Triangles in Chosun Mathematics (조선 산학의 삼각형)

  • Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.41-52
    • /
    • 2009
  • This study investigates a mathematical subject, 'triangles' in mathematics books of Chosun Dynasty, in special Muk Sa Jib San Bub(默思集算法), Gu Il Jib(九一集), San Hak Ib Mun(算學入門), Ju Hae Su Yong(籌解需用), and San Sul Gwan Gyun(算術管見). It is likely that they apt to avoid manipulating general triangles except the right triangles and the isosceles triangles etc. Our investigation says that the progress of triangle-related contents in Chosun mathematics can fall into three stages: measurement of the triangle-shaped fields, transition from the object of measurement to the object of geometrical study, and examination of definition, properties and validation influenced by western mathematics.

  • PDF

The Excess and Deficit Rule and The Rule of False Position (동양의 영부족술과 서양의 가정법)

  • Chang Hyewon
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.33-48
    • /
    • 2005
  • The Rule of False Position is known as an arithmetical solution of algebraical equations. On the other hand, the Excess-Deficit Rule is an algorithm for calculating about excessive or deficient quantitative relations, which is found in the ancient eastern mathematical books, including the nine chapters on the mathematical arts. It is usually said that the origin of the Rule of False Position is the Excess-Deficit Rule in ancient Chinese mathematics. In relation to these facts, we pose two questions: - As many authors explain, the excess-deficit rule is a solution of simultaneous linear equations? - Which relation is there between the two rules explicitly? To answer these Questions, we consider the Rule of Single/Double False Position and research the Excess-Deficit Rule in some ancient mathematical books of Chosun Dynasty that was heavily affected by Chinese mathematics. And we pursue their historical traces in Egypt, Arab and Europe. As a result, we can make sure of the status of the Excess-Deficit Rule differing from the Rectangular Arrays(the solution of simultaneous linear equations) and identify the relation of the two rules: the application of the Excess-Deficit Rule including supposition in ancient Chinese mathematics corresponds to the Rule of Double False Position in western mathematics. In addition, we try to appreciate didactical value of the Rule of False Position which is apt to be considered as a historical by-product.

  • PDF

Comparison of early tertiary mathematics in USA and Korea (미국과 한국의 초기 고등수학 발전과정 비교연구)

  • Lee, Sang-Gu;Seol, Han-Guk;Ham, Yoon-Mee
    • Communications of Mathematical Education
    • /
    • v.23 no.4
    • /
    • pp.977-998
    • /
    • 2009
  • In this article, we give a comparative study on the last 300 years of USA and Korean tertiary mathematics. The first mathematics classes in United States were offered before July, 1638, but the real founding of tertiary mathematics courses was in 1640 when Henry Dunster assumed the duties of the presidency at Harvard. President Dunster read arithmetics and geometry on Mondays and Tuesdays to the third year students during the first three quarters, and astronomy in the last quarter. So tertiary mathematics education in United States began at Harvard which is the oldest college in USA. After 230 years since then, Benjamin Peirce in 1870 made a major and first American contribution to mathematics and got an attention from European mathematicians. Major change on the role of Harvard mathematics from teaching to research made by G.D. Birkhoff when he joined as an assistant professor in 1912. Tertiary mathematics education in Korea started long before Chosun Dynasty. But it was given to only small number of government actuarial officers. Modern mathematics education of tertiary level in Korea was given at Sungkyunkwan, Ewha, Paichai, and Soongsil. But all college level education opportunity, particularly in mathematics, was taken over by colonial government after 1920. And some technical and normal schools offered some tertiary mathematics courses. There was no college mathematics department in Korea until 1945. After the World War II, the first college mathematics department was established, and Rimhak Ree in 1949 made a major and first Korean contribution to modern mathematics, and later found Ree group. He got an attention from western mathematicians for the first time as a Korean. It can be compared with Benjamin Peirce's contribution for USA.

  • PDF