• Title/Summary/Keyword: Mathematical representation

Search Result 648, Processing Time 0.023 seconds

A lower bound analytical estimation of the fundamental lateral frequency down-shift of items subjected to sine testing

  • Nali, Pietro;Calvi, Adriano
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 2020
  • The dynamic coupling between shaker and test-article has been investigated by recent research through the so called Virtual Shaker Testing (VST) approach. Basically a VST model includes the mathematical models of the test-item, of the shaker body, of the seismic mass and the facility vibration control algorithm. The subsequent coupled dynamic simulation even if more complex than the classical hard-mounted sine test-prediction, is a closer representation of the reality and is expected to be more accurate. One of the most remarkable benefits of VST is the accurate quantification of the frequency down-shift (with respect to the hard-mounted value), typically affecting the first lateral resonance of heavy test-items, like medium or large size Spacecraft (S/Cs), once mounted on the shaker. In this work, starting from previous successful VST experiences, the parameters having impact on the frequency shift are identified and discussed one by one. A simplified analytical system is thus defined to propose an efficient and effective way of calculating the lower bound frequency shift through a simple equation. Such equation can be useful to correct the S/C lateral natural frequency measured during the test, in order to remove the contribution attributable to the shaker in use. The so-corrected frequency value becomes relevant when verifying the compliance of the S/C w.r.t. the frequency requirement from the Launcher Authority. Moreover, it allows to perform a consistent post-test correlation of the first lateral natural frequency of S/C FE model.

Direct Fairing for Geometric Modeling of Hull Surface (선형의 기하학적 모델링을 위한 직접순정법에 관한 연구)

  • W.D. Kim;J.H. Nam;K.W. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • When a geometric modeling of a hull form for ship design and hull production is done, a hull fairing is a tedious process which wastes a lot of time, but it is unavoidable because hull consist of the sculptured surfaces. This paper presents the mathematical method of the direct fairing to overcome the tediousness of cross fairing. Bi-cubic B-spline surface description was adopted for the representation of the hull surface. The fairing process was executed by minimizing the strain energy in a shell plate. The color-encoded Gaussian curvature and strain energy were visualized on the screen to illustrate the fairness of the surface. The geometric information generated from the faired hull surface model was interfaced with the basic design calculation package and the hull production system.

  • PDF

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Lee, Chun-Woo;Kong, Ja-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1783-1792
    • /
    • 2009
  • Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation

  • Kim, Jin-Wook;Kim, Soo-Jae;Ko, Hee-Dong;Terzopoulos, Demetri
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.326-333
    • /
    • 2007
  • To simulate solid dynamics,a we must com-pute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously re-peated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a frame-buffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.

  • PDF

A Study on Implementation of Image Editing Tool based on Combining of Bitmap and Vector Image (비트맵과 벡터방식을 혼합한 이미지 편집도구 구현에 관한 연구)

  • 김진호;이규남;나인호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.165-168
    • /
    • 2001
  • It is possible to classify image data into two types according to the internal representation: one is bitmap, the other is vector. A bitmap image is represented by the two dimensional pixels whereas a vector image is represented by mathematical functions to draw vector objects such as line, rectangle and circle on the two or three dimensional space. So it is necessary for users to use a individual application program for each different image. In this paper, we present a method for designing and implementation of image editing tool based on combining of bitmap and vector image.

  • PDF

A Study on Development of Laptop-Based Pilots' Ship-Handling Simulation Software

  • Jeong, Tae-Gwoen;Chen, Chao;Lee, Shin-Geol;Lee, Jeong-Jin;Huh, Yong-Bum
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.571-575
    • /
    • 2012
  • Berthing and unberthing maneuver is essential work for marine pilots and securing the safety against risks during the maneuver is more important than anything else. Moreover, the maneuvering environment in ports and harbors has changed rapidly and got worse due to development of a new port, the advent of a new type or large-sized ship, and the rapid increase in harbor traffic. As one of measures taken to cope with such changes in the maneuvering environment and for each pilot to improve his own maneuvering ability, this paper developed laptop-based ship-handling simulator which is readily available anytime and anywhere. This paper is to develop a conning display for ship's maneuvering and electronic chart based display widely used nowadays to represent a model ship's movement. The displays were arranged appropriately considering pilot age, easy handling by mouse, using a maximum screen, proper arrangement of rudder, engine, thruster, tug etc and representation of information. Up to now thirteen (13) model ships were developed based on real-ship, whose mathematical model is Japanese MMG & pilots' low speed maneuver.

A new Tone's method in APOLLO3® and its application to fast and thermal reactor calculations

  • Mao, Li;Zmijarevic, Igor
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1269-1286
    • /
    • 2017
  • This paper presents a newly developed resonance self-shielding method based on Tone's method in $APOLLO3^{(R)}$ for fast and thermal reactor calculations. The new method is based on simplified models, the narrow resonance approximation for the slowing down source and Tone's approximation for group collision probability matrix. It utilizes mathematical probability tables as quadrature formulas in calculating effective cross-sections. Numerical results for the ZPPR drawer calculations in 1,968 groups show that, in the case of the double-column fuel drawer, Tone's method gives equivalent precision to the subgroup method while markedly reducing the total number of collision probability matrix calculations and hence the central processing unit time. In the case of a single-column fuel drawer with the presence of a uranium metal material, Tone's method obtains less precise results than those of the subgroup method due to less precise heterogeneous-homogeneous equivalence. The same options are also applied to PWR UOX, MOX, and Gd cells using the SHEM 361-group library, with the objective of analyzing whether this energy mesh might be suitable for the application of this methodology to thermal systems. The numerical results show that comparable precision is reached with both Tone's and the subgroup methods, with the satisfactory representation of intrapellet spatial effects.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

On the Metric Dimension of Corona Product of a Graph with K1

  • Mohsen Jannesari
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the k-vector r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum cardinality is a basis of G. The corona product, G ⊙ H of graphs G and H is obtained by taking one copy of G and n(G) copies of H, and by joining each vertex of the ith copy of H to the ith vertex of G. In this paper, we obtain bounds for dim(G ⊙ K1), characterize all graphs G with dim(G ⊙ K1) = dim(G), and prove that dim(G ⊙ K1) = n - 1 if and only if G is the complete graph Kn or the star graph K1,n-1.

On the Decomposition of Cyclic G-Brauer's Centralizer Algebras

  • Vidhya, Annamalai;Tamilselvi, Annamalai
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • In this paper, we define the G-Brauer algebras $D^G_f(x)$, where G is a cyclic group, called cyclic G-Brauer algebras, as the linear span of r-signed 1-factors and the generalized m, k signed partial 1-factors is to analyse the multiplication of basis elements in the quotient $^{\rightarrow}_{I_f}^G(x,2k)$. Also, we define certain symmetric matrices $^{\rightarrow}_T_{m,k}^{[\lambda]}(x)$ whose entries are indexed by generalized m, k signed partial 1-factor. We analyse the irreducible representations of $D^G_f(x)$ by determining the quotient $^{\rightarrow}_{I_f}^G(x,2k)$ of $D^G_f(x)$ by its radical. We also find the eigenvalues and eigenspaces of $^{\rightarrow}_T_{m,k}^{[\lambda]}(x)$ for some values of m and k using the representation theory of the generalised symmetric group. The matrices $T_{m,k}^{[\lambda]}(x)$ whose entries are indexed by generalised m, k signed partial 1-factors, which helps in determining the non semisimplicity of these cyclic G-Brauer algebras $D^G_f(x)$, where G = ℤr.