• Title/Summary/Keyword: Mathematical correction

Search Result 151, Processing Time 0.026 seconds

Analytical determination of shear correction factor for Timoshenko beam model

  • Moghtaderi, Saeed H.;Faghidian, S. Ali;Shodja, Hossein M.
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.483-491
    • /
    • 2018
  • Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the nonuniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

CORRIGENDUM TO "A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER", [J. KOREAN MATH. SOC. 54 (2017), NO. 2, 461-477]

  • Lee, Chang-Ock;Park, Eun-Hee;Park, Jongho
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.791-797
    • /
    • 2021
  • In this corrigendum, we offer a correction to [J. Korean Math. Soc. 54 (2017), No. 2, 461-477]. We construct a counterexample for the strengthened Cauchy-Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5 of the original paper, an estimate for the extremal eigenvalues of the standard unpreconditioned FETI-DP dual operator.

A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE

  • Kim, Hyea-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.927-945
    • /
    • 2012
  • An approximation of singular source terms in elliptic problems is developed and analyzed. Under certain assumptions on the curve where the singular source is defined, the second order convergence in the maximum norm can be proved. Numerical results present its better performance compared to previously developed regularization techniques.

ERRATUM TO "STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES" [J. KOREAN MATH. SOC. 57 (2020), NO. 6, PP. 1435-1449]

  • Kim, Jongsu
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.649-650
    • /
    • 2022
  • In this erratum, we offer a correction to [J. Korean Math. Soc. 57 (2020), No. 6, pp. 1435-1449]. Theorem 1 in the original paper has three assertions (i)-(iii), but we add (iv) after having clarified the argument.

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.

Correction Method for Geometric Image Distortion and Its Application to PCB Inspection Systems (인쇄회로기판 검사를 위한 기하학적 영상 왜곡의 보정 방법)

  • Lee, Wan-Young;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.772-777
    • /
    • 2009
  • The geometric distortion of image is one of the most important parameters that take effect on the accuracy of optical inspection systems. We propose a new correction method of the image distortion to increase the accuracy of PCB inspection systems. The model-free method is applied to correct the randomly distorted image that cannot be represented by mathematical model. To reduce the correction time of inspection system, we newly propose a grid reduction algorithm that minimize the number of grids by the quad-tree approach. We apply the proposed method to a PCB inspection system, and verify its usefulness through experiments using actual inspection images.

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE

  • Kum, Sang-Ho;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.683-695
    • /
    • 2001
  • In this paper we are concerned with theoretical properties of gap functions for the extended variational inequality problem (EVI) in a general Banach space. We will present a correction of a recent result of Chen et. al. without assuming the convexity of the given function Ω. Using this correction, we will discuss the continuity and the differentiability of a gap function, and compute its gradient formula under tow particular situations in a general Banach space. Our results can be regarded as infinite dimensional generalizations of the well-known results of Fukushima, and Zhu and Marcotte with soem modifications.

  • PDF