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ON GAP FUNCTIONS OF VARIATIONAL
INEQUALITY IN A BANACH SPACE

SanGgHO KuM AND GUE MYUNG LEE

ABSTRACT. In this paper we are concerned with theoretical prop-
erties of gap functions for the extended variational inequality prob-
lem (EVI) in a general Banach space. We will present a correction
of a recent result of Chen et. al. without assuming the convexity
of the given function Q. Using this correction, we will discuss the
continuity and the differentiablity of a gap function, and compute
its gradient formula under two particular sitvations in a general
Banach space. Our results can be regarded as infinite dimensional
generalizations of the well-known results of Fukushima, and Zhu
and Marcotte with some modifications.

1. Introduction

Given C closed and convex in R™ and a function F : C — R", the
variational inequality problem (in short, VI) is to find # € C such that

(1.1) (F(Z),y—2) >0 forall y € C,

where (,-) denotes the inner product in R™. Due to its applications to
such diverse areas as partial differential equations, mathematical eco-
nomics, and operations research, VI has been investigated by many au-
thors and various methods and algorithms to solve VI have been devel-
oped. Readers are referred to the comprehensive survey paper of Harker
and Pang [5] and the references therein. In the past two decades, an
interesting approach for solving VI has been made by introducing gap
functions. A function ¢ : C — R U {+oo} is called a gap function for
VI if

Received Novernber 14, 2000. Revised December 15, 2000.

2000 Mathematics Subject Classification: 49J40, 47720, 49J50, 52A41, 90J26.

Key words and phrases: variational inequalities, gap functions, Gateaux differen-
tiable, the Clarke generalized gradient, nonconvex programming.

This work was supported by Korea Research Foundation BSRI-1998-015-D00039.



684 Sangho Kum and Gue Myung Lee

(i) #{z) > 0 for all x € C; and

(ii) ¢{(Z) = 0 if and only if ¥ solves VL.
With a gap function, one can reformulate VI as the following equivalent
minimization problem:

minimize ¢(x) subject to z € C.

A gap function, e.g., Auslender’s gap function [1], is in general nondif-
ferentiable. However, Fukushima [4] proposed the projective gap func-
tion and provided an equivalent differentiable optimization problem for-
mulation of V1, and treated a wide variety of applications. On the other
hand, Zhu and Marcotte [8] studied a very general gap function which
includes, as special cases, the projective gap function of Fukushima [4].
Recently, Chen et. al. [2] gave an interpretation of the meaning ‘gap’
in terms of Young's inequality. In addition, they dealt with a modifi-
cation [2, Theorem 4.1] and an extension [2, Theorem 5.1} of Zhu and
Marcotte [8, Theorems 3.1 and 5.1]. All the above results are presented
in the Euclidean space R™.

In this paper we are concerned with theoretical properties of gap
functions for the extended variational inequality problem (EVI) 2] in
a general Banach space. To be more specific, first we are going to find
a condition under which the function ¢ (4.1) in Chen et. al. 2] can
be a gap function for EVI. Then we will discuss the continuity and the
differentiablity of the gap function under two particular situations. As
the beginning of our discussion, we provide a counterexample which
shows that Chen et. al. [2, Theorem 4.1] is not correct.

2. Preliminaries

Consider the following EVL
EVI: Let E be a real Banach space and E* be its dual space. Given
a nonempty closed convex subset C of E, a function F': C'— E* and a

proper convex lower semicontinuous function f : B — R U {400}, find
Z € C such that

(2.1) (F(Z),z — %) > f(z) — f(x) forallz € C,

where (,-) denote the dual paring on E x E*. If f is the indicator
function on C, EVI (2.1) becomes VI (1.1).
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For a locally Lipschitz function ¢ : £ — R on F, the Clarke general-
ized gradient [3] dg(z) is well defined for each x € E. Some properties
of 8¢ necessary for our argument in the sequel are as follows.

PROPOSITION 2.1. If g is continuously (Gateaux) differentiable at Z,
then g is locally Lipschitz at & and 8¢(Z) = {Vg(Z)}, where Vg(Z) is
the Gateaux derivative of g at T.

Proof. See Clarke [3, Propositions 2.2.2 and 2.2.4] O

PROPOSITION 2.2. If g is convex and locally Lipschitz at Z, Og(Z)
coincides with the subdifferential of g at T in the sense of convex anal-
ysis.

Proof. See Clarke [3, Proposition 2.2.7] a

PROPOSITION 2.3. If g is locally Lipschitz at Z, C is a convex subset
of E and g attains a minimum over C at %, then 0 € 9g(z) + N¢(Z),
where Ng(z) = {z* € E* | (2%, x — ) < 0 for all z € C}, the normal
cone of C at z.

Proof. See Clarke [3, Corollary and Proposition 2.4.4] O

ProposiTION 2.4. Ifg; (i =1,2,-- ,n) is a finite family of functions
which is locally Lipschitz at Z, then their sum Xg; is also locally Lipschitz
at ¥, and (Xg;)}(Z) C £8¢;(Z).

Proof. See Clarke [3, Proposition 2.3.3] a

Now we introduce an extra function §2: C x ¢ - R. Let Q(z,y} be
nonnegative, and for each z € C, {¥z,-) is continuously differentiable
(not necessarily convex) on C. We further assume that Q(z,z) = 0
and V,$(z,z) =0 for all z € C. Here V,Q(x, z) denotes the Gateaux
derivative of Q(z,y) with respect to the second variable, evaluated at

=z.

Our main goal is to show that the following function ¢ : ¢ — R is a
gap function for EVI (2.1) and ¢ is continuous and differentiable under
suitable conditions;

22)  ¢(z) = sup{(F(a), = 1)+ /(@) = £(4) ~ = w)}-
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3. An example and a correction

Chen et. al. [2, Theorem 4.1] asserted that the above ¢ (2.2) is a gap
function for EVI (2.1) under the following general assumptions on §2 in
the case that £ = C' = R".

Assertion. Let 2 : R* xR™ — R be nonnegative and Q{z,z) = 0 for all
x € R™. Let Q(z, ) be convex for each z € R™, and 0 € 3,0z, z), where
0,0z, x) is the subdifferential of Q(x,y) with respect to the second
variable, evaluated at y = x. Assume that f: R® — R U {400} is
a proper convex lower semicontinuous function. Then ¢ (2.2) is a gap
function for EVI (2.1)

However, we can find a simple example which shows that Assertion is
not correct.

ExXAMPLE 3.1. Define two functions F and f : R — R to be the
identity function on R. Define another function 2: R x R — R to be
Qz,y) =z —yl.

We can easily check that all the conditions of Assertion are satisfied. In-
deed, 8,{(z,z) = [-1, 1] contains the origin 0. By a direct computation,
we get

¢(z) : = sup{(F(z),z — y) + f(z) — f(y) — =, v)}

yeR
=sup{e(e —y)+oz-y—|z -y}
yeER
= 5[—2,0] (z),
where J[..20(z) is the indicator function of the closed interval [—2,0]
defined by
5 @) 0, if =ze[-2,0],
_ag () =
=20 +o0, if z¢[-2,0.
On the other hand, Z is a solution of EVI (2.1} if and only if
(F(z),z—Z)>2 f(Z)— f(z) YVceRez(z—Z)>T—-z VzeR

< Z+D(z-2)>0 VzeR
& = -1
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Thus the unique solution of EVI (2.1} is £ = —1. This implies that
@(x) = 0[—2,0)(x) is not a gap function for EVI (2.1). Therefore Assertion
does not hold even in the one dimensional case R.

REMARKS 3.1. (i) The mistake in the proof of Assertion in Chen
et. al. [2, Theorem 4.1] resides in the statement that “the solution x
of the convex optimization problem also solves the following variational
inequality :

Find x € R" such that (¢, y—x}>0 VYyeR",

where g € 9,®(x,x)” (see Chen et. al. [2, p.667]}. However this is not
true in general if ®(z,-) is not (continuously) differentiable.

(ii) Even though F is a C°° monotone operator and f'is alsoc a C*
convex real valued function, ¢ is not a gap function for EVIL

We change the assumption on Q(z,-) to get a correction of Chen et.
al. [2, Theorem 4.1] in a Banach space. The point of change is to impose
the differentiability condition on £2(z, ) and to remove the convexity of
Q(z,-) instead.

THEOREM 3.1. Let E be a real Banach space and E™ be its dual
space. Let C be a nonempty closed convex subset of E, F . C — E* be
a function, and f : E — R be a convex continuous function. Let () :
C x C — R be nonnegative and for each x € C, Q(z,-) be continuously
Gateaux differentiable (not necessarily convex) on C. Assume further
that for each x € C, Q(z,x) =0 and V,Q(x,z) = 0. Then ¢ (2.2} is a
gap function for EVI (2.1).

Proof. Since £2(z,z) = 0 for each z € C, it is clear that ¢(z) > 0 for
each z € C. Now assume that Z solves EVI (2.1). Then

(F(Z),z—Z) = f(z) — f(z) forallz e C.
As QF,z) >0 forall z € C,
(F(z),z —z) > f(z) — f(z) — Qz,z) forall z € C,

and ¢(Z) < 0. Hence ¢(Z) = 0.
Conversely, assume that ¢(Z) = 0. This implies that

(FZ),z—y)+ f(Z) ~ f(y) - Qz,y) <0 forallye C.
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Thus Z is a solution of the following nonconvex and nondifferentiable
optimization problem :

minimize {F(Z),y) + f(y)+Q(Z,y) subject to y € C.
By Propositions 2.1 to 2.4, we have
0 € F(Z) + 3f(T) + V,Q(Z,F) + Nc(Z).

Since V,(Z, %) = 0, there exists an 2* € 0f(Z) such that —F(z)—z" €
Nc(Z). Hence (—F(z) — z*,z — &) < 0 for all z € C, that is,

(3.1) (F(),z—T)+ {&*, 2 —Zy 2 0forallz € C.
Because f is convex and z* € 9f(Z), we have
(3.2) flo)—f(E) 2 (", z~z)forallz € C.

From (3.1) and (3.2), (F(Z),z — %) + f(z) — f(z) > 0 forall z € C.
Therefore Z solves EVI (2.1), as desired. O

REMARKS 3.2. We would like to point out that Theorem 3.1 general-
izes Zhu and Marcotte [8, Theorem 3.1] in the following manners: (i) By
adopting the Clarke generalized gradient [3], we could remove the strong
convexity assumption on §2(z, ), which is essential in Zhu and Marcotte
[8, Theorem 3.1]. Thus it is not necessary to suppose the strong con-
vexity assumption on Q(z,-) only for the result that ¢ is a gap function
for EVI (2.2); (ii) Theorem 3.1 is obtained in a Banach space whereas
Zhu and Marcotte [8, Theorem 3.1 is done in R"™; (iii} Theorem 3.1 is
an extension of Zhu and Marcotte [8, Theorem 3.1} from VI to EVI.

4. The continuity and differentiability of ¢

In this section we are going to investigate the continuity and differ-
entiability of ¢ for two special cases. The first case (Theorem 4.1) deals
with the projective gap function of Fukushima [4] in a Hilbert space H
under the assumption that C = E = H. The second one (Theorem 4.3)
is concerned with an infinite dimensional modification of Chen et. al.
[2, Theorem 3.3] in a reflexive Banach space. We derive the first case.

THEOREM 4.1. Let H be a real Hilbert space and H* be its dual
space. Let F': H — H* be a continuous operator, and A: H — H* be
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a continuous linear and symmetric operator in the sense that (Azx,y) =
(Ay,x), where (-, ) denotes the usual pairing on H* x H. Assume further
that the bilinear form g : H x H — R defined by g(z,y) = {Az, y) is
coercive on H, that is, there exists o > 0 such that

g(x,z) = (Ax, =) > a||z||® for all z € H.

Then ¢(x) = sup,¢ y {(F(z),z—y) — 3{A(x —y), z—y)} is a continuous
gap function for VI (1.1). If F is continuously Géiteaux differentiable,
then ¢ is also continuously Gateaux differentiable, and its gradient is
given by

Vo(z) = J(Fz) o VF(x).

Here J. is the duality mapping from H* to H*".

Proof. First note that the bilinear form g{z,y) = {Az, y) defines
an inner product on H and the induced norm |jz||a = /g(z,z} =

(Az, x) is equivalent to the original norm ||z|| on H. Thus we may as-
sume that H is equipped with the norm ||z]|4 = v/g(z,z) = /(Az, )
induced by the inner product g(z,y) = (Az, y). Now we reformulate ¢
(2.2) as follows;

P(z) = sgg{(F(m), z —y) + f(z) — fly) - Qz,y)}
= (F(z),z) + f(z) + Sgg{(—F(w),w —(f + Q) ()}

(4.1) = (F(z),5) + f(z) + (f + Q)" (- Fz),
where Q,(y) = Q(z,y) for each z, y € E, and (f + ;)" denotes the
Fenchel conjugate of f+ 2, defined by (f +£2,)*(z*) = supyepl{r*, ¥) ~

(f + Q) (y). Taking f =0 and Q(z,y) = ${A(z —y), = —y) in (4.1),
we obtain

#le) = sup{(F(a),z — ) ~ 5{Alz — 1), o - 1)}
yeH

(42) = (F(z),2) + " (~Fs) = 3Fall.”,

where || - ||. denotes the equivalent dual norm on H* induced by {|z4
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on H. Indeed, for each y* € H*, we have
k7 & * 1
Qz (y ) = Sup[(@f :y> - E(A(y —E), Y- m)]
yeH

. 1
= sup[{y*,z+z) — §(Az, 2)]
zeH

* * 1
= (y ,:E) + Sup[(y ,Z) - §”zllA2]
zeHd

. , 1
= (y*,z) +sup sup [{y*,z)— 5/\2]
A20 ||z]la=

* * 1
= (") + sup[Ally” [l — 507]
A0

* ]' *
EONOR T I

Hence )
Qu*(~Fz) = (-Fz,2) + 5 | Fall.”.

Therefore (4.2) does hold. Since Q(z,y) = 3y — z|| 4%, $¥(z,y) is non-
negative and clearly Q{z,z) = 0. Moreover, for each z € H, we can
directly compute

Oy(Q)(y) = J(y —z) o Idn
where J is the duality mapping defined by

J(z)={z" € H" [ (z”, z) = |||, - ||z]|4 and ||="]|, = ||z]|a}

(see Phelps [7, 2.26 Example, p.27]), and Idp is the identity operator on
H. In particular, the duality mapping J is the canonical isomorphism
between H and H* (Actually J can be identified with the identity op-
erator on H = H* in this sense). Thus J is a single-valued continuous
operator, so 3,(Q.)(y) = J(y — z) = V,(§2;)(y), and €, is continu-
ously Géteaux differentiable. In addition, V,(Q;)(z) = V,Q(z,z) =
J{z —x) = J(0) = 0, which implies that ¢ is a gap function for VI (1.1)
by Theorem 3.1. Then the continuity and diffrentiability of ¢ immedi-
ately follows from (4.2}, The gradient of ¢ is given by

Vo(z) = J.(Fz) o VF(z). 0

REMARKS 4.1. (i) In the case H = R", the operator A is represented
by an n x n positive definite symmetric matrix A (we denote it by A for
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notational simplicity). In this case we can easily show that the bilinear
form g(z,y) = y*Az is coercive. Hence the coercivity assumption on
A in Theorem 4.1 is natural. Therefore Theorem 4.1 is a Hilbert space
version of Fukushima [4, Theorem 3.2] with the modification C' = H.
(i) As pointed out in Chen et. al. (2], in Fukushima [4], the gradient
formula requires the solution of another optimization problem. However,
in the gradient formula of Theorem 4.1, we don’t need to solve any
optimization problem.

We need some more definitions and propositions to reach our second
case. Let E be a Banach space. A function f: E — RU {400} is said
to be coercive when

1) = 4-00.

1m _— =
Izl —+oo ||z

PROPOSITION 4.1. For a proper convex lower semicontinuous, and
coercive function f : E — R U {400}, f*(z*) < 400 for all z* € B*,
that is, domf* = E*. In this case, f* is a continuous convex real-valued
function on E~.

Proof. For the proof of the first part, refer to Hiriart-Urruty [6,
Proposition 1.3.8, p. 46, Chapter X]. For the proof of the second part,
see Phelps [7, Proposition 3.3].

A function f : E — R is said to be strongly conver with modulus
a {a>0)if forall z, y € F, and « € [0, 1]}, we have

flom+ (1~ a)y) < af () + (1- @) f(3) ~ 5aa(l ~ a)lls — 4|

For the sake of completeness, we provide a proof of the following.

PROPOSITION 4.2. A continuous and strongly convex function with
modulus a (a > 0) f: E — R is coercive.

Proof. For z, y € E and « € (0,1), we have

(43) ()2 J@) + (" y- )+ paly -2l forall 2° € 9f()
Indeed,

«

1
z) = za(l - a)lly — «l*.
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Hence,

i 1AW= 2T ) fia) - Saly - 217

Since

(z*, y—z) < Eﬂ% f(@ + oly ;x)) —J@) for all * € 8f(x),

we get
1
(*, y—2) < f@) ~ f(@) - sally - =,

as desired. Dividing (4.3) by |ly| yields

® _ 2
() > f=) =yl + =) n L iyl — ll=i)®
Iyl = llyll Il 2 %l
Thus
im f_(}_l_) > 4o
lyll—+oo ||yl
This completes the proof. d

Now we are in a position to establish the second case in which £ = 0.

THEOREM 4.2. Let E be a real Banach space and E* be its dual space
equipped with the norm topology. Let F : C — E* be a continuous
operator, and f : E — R be a continuous and strongly convex function
with modulus a (a > 0). Then ¢(z) = sup,ec{(F(z),z —y} + f(z) -
f(y)}, is a continuous gap function for EVI (2.1).

Proof. Since £ = 0 in (2.2), ¢ is obviously a gap function for EVI
{2.1) by Theorem 3.1. Thus we only need to verify the continuity of ¢.
In fact,

¢(z) = sup{(F(z),z —v) + f{z) — f(v)}

yel

= (Flz),z) + flz) + Sgg{(—F(ﬂ?),y) - fy) - dc(y)}

(4.4) = (F(z),z) + f(2) + (f + c)" (- Fz),
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where 8- denotes the indicator function of C. By Proposition 4.2, f is
coercive, hence f + éc is so. Thus (f + §¢)* is continuous by means
of Proposition 4.1. Therefore ¢ is clearty continuous if F is continuous.
This completes the proof. d

For the differentiability of ¢, we assume that E is reflexive and C = F.

THEOREM 4.3. Let E be a real reflexive Banach space and E* be
its dual space equipped with the norm topology. Let F': E — E* be
a continuously Gateaux differentiable operator, and f : E — R be a
continuously Géteaux differentiable, and strongly convex function with
modulus ¢ (& > 0). Then ¢ (4.4), the gap function for EVI (2.1), is
continuously Gateaux differentiable, and its gradient is given by

Vé(z) = F(z) + (VF(z)(-), @) + Vf(z) — (V)" (~Fz) o VF(z).

Proof. Since C = E, §c = 0. So (4.4) becomes

¢(z) = (F(z),z) + f(z) + f*(-Fa).
To achieve our result, we have only to verify that f* and h(z) = (F(z),z)
are continuously Gateaux differentiable.
Step 1. f* is continuously Géteaux differentiable.

It is well known that 8f* = (8f)~!. Hence for the differentiability of f*,
it suffices to show that &f* is single-valued, that is, 8f(z1) NI f{z2) = 0
whenever z; # z2 Suppose z* € df(z,;)NIf(x2), where z; # x2. Then
we have :

(4.5) =)+ flz) = (&%, z;) for i=1, 2.
According to Young’s inequality, it follows from (4.5) that

)+ B 00 f(m) = (&%, B 04m) < f(2*) + F(BL i),

where £2_,a; = 1, a; > 0 for i = 1, 2. This implies that X?_,q; f(z;) =
F(2Z ,a;z;) on the line segment [z, 23], which contradicts the strong

convexity of f.

2



694 Sangho Kum and Gue Myung Lee

It remains to check that 3f* = Vf* is continuous. We can easily deduce
the following from (4.3):

(@1 — 23, 21 — w2) > allzs — w2,

where z} € 8f(x;), i.e. z; = Vf*{(x}) for i =1, 2. Thus we have
* * Lk 1 * * * * *
IV (2]) = V@)l < E”xl — a3| for all z7, z3 € E7,

which implies that V f* is Lipschitzian with constant 1/e on E*.
Step 2. h{z) = (F'(z),x) is continuously Géateaux differentiable.

To do this, we directly compute the Géteaux derivative of h. For each
x, vEE,

h{z + tv) — h(x)

Vh(z){v) = lim

Py ¢
~ lim (F(z + tv), = +tv) — (F(z),z)

£—0 n
_ }i_I%(F(:U+tUt) - F(a;)’ 2+ (Flz + 1), o)

= (VF(z)(v), z) + (F(z),0).

Thus
Vh(z) = F(z) + (VF(z)(-), =),

which shows that & is continuously Géteaux differentiable, as desired.
Furthermore the gradient formula Vé(z) immediately comes from (4.4)
as follows;

Vé(z) = Vhi{z) + Vf(z) + Vf*(—Fz) o (—VF(z))
— F() + (VF(@)(), 2) + V(z) — (V) (~Fz) 0 VF(z).

This completes our proof. (]

REMARK 4.2. For the continuity of the gap function ¢, we did not
need to suppose that C' = E. However, C' = E was to be assumed for the
differentiability of ¢. Theorem 4.3 is an infinite dimensional modification
of Chen et. al. [2, Theorem 3.3] in a reflexive Banach space.
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