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CORRIGENDUM TO “A DUAL ITERATIVE
SUBSTRUCTURING METHOD WITH A SMALL PENALTY
PARAMETER”, [J. KOREAN MATH. SOC. 54 (2017), NO. 2,

461-477]

CHANG-OCK LEE, EUN-HEE PARK, AND JONGHO PARK

ABSTRACT. In this corrigendum, we offer a correction to [J. Korean Math.
Soc. 54 (2017), No. 2, 461-477]. We construct a counterexample for the
strengthened Cauchy—Schwarz inequality used in the original paper. In
addition, we provide a new proof for Lemma 5 of the original paper, an
estimate for the extremal eigenvalues of the standard unpreconditioned
FETI-DP dual operator.

In the first and second authors’ previous work [4], the strengthened Cauchy—
Schwarz inequality used for [4, Eq. (3.8)] is incorrect and consequently, the
statement of [4, Lemma 4] needs to be corrected. We present a new proof
for [4, Lemma 5], that does not use [4, Lemma 4]. All notations are adopted
from the original paper [4].

In the paragraph containing [4, Eq. (3.8)], it was claimed that by deriving a
strengthened Cauchy-Schwarz inequality in a similar way to Lemma 4.3 in [3],
it is shown that there exists a constant v such that

2a(vr +va,ve) > —y(a(vr +va,vr +va) + a(ve, ve)),

where 0 < v < 1 is independent of H and h. That is, the above inequality is
true when there exists a constant v such that

(1) ja(vr + va,ve)| <7 (@(vr +va, vr + ) (@(ve, ve))?,

where 0 < v < 1 is independent of h and H.

On the other hand, a specific function w = w;+w.+wa can be constructed,
for which v approaches 1 as H decreases. In fact, it suffices to characterize such
wa because wy and w, in (1) are determined by wa in terms of the discrete
a-harmonic extension H¢(wa ).

Proposition 1. There is no v (0 < v < 1), independent of h and H, satisfy-
ing (1).
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Proof. Noting that H¢(va) in X} is a(-, -)-orthogonal to all the functions which
vanish at the interface nodes except for the subdomain corners, we have that

a(vr + va,ve) = a(H(va) — Ve, ve)
=a(H(va),ve) — a(ve, ve)
= —a(ve, Ve),

which implies that for a(v; +va,vr +va) # 0, the estimate (1) is equivalent to

(2) _ a(UC?UC) S 72
a(vr + va, vy +va)

)

where v < 1 is independent of h and H.

Next, let us divide 2 = (0,1)? into 1/H x 1/H square subdomains with a
side length H. Each subdomain is partitioned into 2 x H/h x H/h uniform right
triangles. Associated with such a triangulation, we select the function w in X}
such that w is a conforming IP; element function in each subdomain, and wa =1
at all the nodes on the interface except for the subdomain corners. Then it
is noted that w in X vanishes on 0. Let us denote by {z} the subdomain
corners that are not on 9. Hence, for w. and w; that are computed by the
discrete harmonic extension of wa, it is observed that

(3a) we =1 at all zy,
(3b) wr =1 in Q; for 092; NN = @,

which imply that
(4) w =1 in all subdomains whose boundary does not touch 02.

Let us first estimate a(we, w.) in (2). Using (3a), we have that

(1/H-1)? 1 2
d(wca wc) = Z d((bc,k; ¢c,k) =4 (H - 1> »
k=1

where ¢, is the nodal basis function associated with z;. We next look over
a(wr +wa,wr + wa) based on the fact that, for 0Q2; NN = &

(5) ELQj (wr + wa, wy +wa) = / |V (wr + wA)|2dx = / |Vwc|2d:c =4,

Q; Q;
which follows from (4). Hence it suffices to estimate aq, (wr + wa,ws + wa)
for the following two cases:

(i) only one of the edges of the subdomain €; is on 0.
(ii) two edges of the subdomain §2; are on 0f.

Here, the number of subdomains corresponding to the cases (i) and (ii) is
4 (% — 2) and 4, respectively. Let us take H/h = 3 to focus only on the
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dependence of v on either H or h. By finding the discrete local harmonic
extensions for the cases (i) and (ii), it is computed directly that

17
4

. for the case (i),
(6) dg; (wr +wa, wr +wa) = {14 Y
1

for the case (ii).

Then by using (5) and (6), it follows that

a(wr+wa,wr+wa) Z + Z aq,; (wr +wa, wr +wa)

(7) j for j for
0Q;NON=2 0Q;NONFALD

1 2 1
4(=—2) +17( = —2)+14.
(2) n7 (5 2)

Finally, from (3a) and (7), it is confirmed that for a function w given above,

. &(wcva)
lim — =1
H—0 a(wl + wa,wr + wA)

which implies that (2) does not hold. Therefore, the proof is completed. [l

In [4, Lemma 5], the extremal eigenvalues of the FETI-DP dual operator
F = BAS !BY were estimated using [4, Lemma 4]. Since [4, Lemma 4] is
incorrect, we provide a new estimate for F' that does not utilize [4, Lemma 4].
We assume that each subdomain §2; is the union of elements in a conforming
coarse mesh Ty of . First, we consider the following Poincaré-type inequality
that generalizes [4, Proposition 3].

Lemma 2. For any v; € X}{, let Iijj be the linear coarse interpolation of v;

such that Iijj = wv; at vertices of a subdomain Q; C R?. Then we have

_ -1
0 2 S H™'(1+1In %) lv; — IJijHQLQ(OQj) ford =2,
JIHI(Q,) ~ _ _9

R RO €S I TV L [ Jord=3.

Proof. Note that both sides of the above inequality do not change if a constant
is added to v;. Without loss of generality, we assume that v; has the zero
average, so that the following Poincaré inequality holds:

(8) [ojllzr ;) S vilE @),

where [| - [ g1 (q,) is the weighted H'-norm on €; given by

1
ij||2H1(Qj) = |Uj\?11(9j) + ﬁHUjHQL?(Qj)-
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Since I jH v; attains its extremum at vertices, we have
d—1
v, = I vjll L200,) S H = vy = I vjll 200,
d—1
(9) <H 7 (lvjlle(an,) + 1 vjll L= 00,))
d—1
SH>= HUJ’”L""(OQJ')'

Let H;v; be the generalized harmonic extension of v;|gq; introduced in [7] such
that H;v; = v; on 9€); and

10 Hivill gy = min w; .
(10) el = min sl
wj=v; on 08

Then it follows that

H7Yojl 00,y < HHH 0517 0,

(11a) < Ca(H, h) M55 117 0,
(11b) < Ca(H, h)l[vjll7 g,
(11c) < Ca(H, W) vl q,)s
where
H(l+In#) ford=2
Cuit.my = 20 ) - ford =2
h(ﬁ) for d = 3,

and (11a) is due to the discrete Sobolev inequality [2, Lemma 2.3]. Also (10)
and (8) are used in (11b) and (11c), respectively. Combination of (9) and (11)
completes the proof. (I

Note that Lemma 2 reduces to [4, Proposition 3] when v; vanishes at vertices
of ; so that If'v; = 0. Using Lemma 2, we obtain the following estimate for
F.

Proposition 3. For F' = BASleg, we have
CrdATA SN EAS CRpATA W,
where
Cr= h*=4 for d = 2,3,

and

G (%)(14—111%) ford=2,
m ffl(%)2 ford = 3.

Consequently, the condition number of F satisfies the following bound:

(Z)(1+Ini)  ford=2,
K(F)S{(%)Q h ford =3,
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Proof. As the derivation of the maximum eigenvalue of S in the original pa-
per [4] is correct, the derivation of C is also correct. Thus, we only estimate
Cr in the following.

We first prove that

(12) (BA’UA)T(BA’UA) f,épszvA V’UA.

For va, we consider the discrete a-harmonic extension v = H¢(va). Let w =
v — Iy, where Iy is the linear coarse interpolation of v onto 7H such that
Iy = v at the subdomain vertices. We write w = w; + wa. Since Iy is
continuous along I', we have BaAwa = Bava. Then it follows that

(Bava)" (Bava) = (Bawa)” (Bawa)

. T,
- Z (wg)lrm - wXC)’ij) (w(A])‘r,-k - wg)‘rﬂc)

i<k
) T . T

<Z(( D) e, + (w02]) wg>|m>

i<k

N,

Z (J) )

j=1

N,

<A Z [wll72(50,)

Jj=1
< CpvkiSv
~ FUA Ay

where the last inequality is due to Lemma 2.
Then similar to [5, Theorem 4.4], we get the desired result as follows:

Bava)TA)?
M F)\ = max ((A:;UiA))
vAF#0 'UAS’UA
((BA’UA)T/\)Z
Bava#0 (Bava)T Bava
Ty\2
< C'r max (H T/\)
B0
=CpAT),

SCr

where we used [5, Lemma 4.3] in the first equality. Consequently, this completes
the proof. O

It must be mentioned that the conclusion of Proposition 3 agrees with
Lemma 5 of the original paper [4]. Since the conclusion of [4, Lemma 5] is
true, it requires no additional correction in the remaining part of that paper.

For the sake of completeness, we present a correct estimate for the extremal
eigenvalues of S that replaces [4, Lemma 4].
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Proposition 4. For S = Aan — A?AA;}AIA, we have
T T = T
Cgvava SvpaSva S Csvpva Voa,
where

oo _JHNO+mI) T ford=2,
=5 h3 ford=3,

and
Cg =h?"? ford=2,3.

Proof. Since the derivation of C's in the original paper [4] is correct, we only
consider an estimate for C'g. Take any va and its corresponding finite element
function va. Let v = H(va) be the discrete a-harmonic extension of va.
Proceeding as in [6, Lemma 4.11], we get

N,

viva SATEY [vallZ2(00,)
J=1

N
< H0 Y (1o ) + H [0l

j=1
= Hh' "ol Sva + H W'~ vl|72

Note that we cannot apply the discrete Poincaré inequality [1, Lemma 5.1] in
each subdomain ; since Hva does not vanish at the subdomain vertices in

general.
It remains to show that
H\ T _
(13) ||UH%2(Q) < (1+Ind)yvlSvs  ford=2,
~ | 5vASva for d = 3.

Let IHv be the linear nodal interpolation of v onto the coarse mesh 7. Since
Iy is continuous along the subdomain interfaces I', we can apply the Poincaré
inequality to obtain

70| 2y S T 0l -
Then it follows that
||UH%2(Q) Sllv— IHU||2L2(Q) + ||]HUH%2(Q)
Sllo = I70)|32 0y + 1T 03
_ { (1+ W2 oLSvs  ford=2,

T Sva for d = 3,

where the last inequality is due to [6, Remark 4.13] for d=2 and [6, Lemma 4.12]
for d = 3, respectively. This completes the proof. (I
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